High brightness and long lifetime OLED with mixing layer technology

被引:5
作者
Lee, JH [1 ]
Liu, SW [1 ]
Huang, CA [1 ]
Yang, KH [1 ]
Chang, Y [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Electroopt Engn, Taipei 10764, Taiwan
来源
ORGANIC OPTOELECTRONICS AND PHOTONICS | 2004年 / 5464卷
关键词
OLED; mixing layer; lifetime;
D O I
10.1117/12.549052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we demonstrate organic light emitting devices (OLED) that exhibit high brightness, low driving voltage and long lifetime. Devices with the brightness of 10,000 cd/m(2) can be achieved at 4 V by the use of the high mobility electron-transport layer (ETL) material, bis(10-hydroxybenzo[h]qinolinato)beryllium (Bebq(2)), and the mixing host (MH) technology. Electron mobility of Bebq2 is two orders of magnitude higher than that of the typical ETL material, tris-(8-hydroxyquinoline) aluminum (Alq(3)), from the time-of-flight (TOF) measurement and hence the driving voltage can be decreased. By co-evaporating the hole-transport layer (HTL) material and the ETL material as the host of the emitting layer, it reduces two volts in driving voltage because of its bipolar transport characteristics. MH technology can not only decrease the driving voltage, but also increase the device lifetime since it eliminates the sharp boundary of HTL/ETL interface and decreases the carriers piling up near this interface which causes the organic material degradation. Compared to the conventional heterojunction (HJ) OLED, operation lifetime of ME devices was enhanced by a factor of 4.
引用
收藏
页码:434 / 440
页数:7
相关论文
共 9 条
[1]   Device physics of organic light-emitting diodes based on molecular materials [J].
Bruetting, Wolfgang ;
Berleb, Stefan ;
Mueckl, Anton G. .
ORGANIC ELECTRONICS, 2001, 2 (01) :1-36
[2]   Graded mixed-layer organic light-emitting devices [J].
Chwang, AB ;
Kwong, RC ;
Brown, JJ .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :725-727
[3]   Recent progress of molecular organic electroluminescent materials and devices [J].
Hung, LS ;
Chen, CH .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 39 (5-6) :143-222
[4]  
Hwang W., 1981, Electrical transport in solids
[5]   ELECTRON AND HOLE MOBILITY IN TRIS(8-HYDROXYQUINALINOLATO-N1,O8) ALUMINUM [J].
KEPLER, RG ;
BEESON, PM ;
JACOBS, SJ ;
ANDERSON, RA ;
SINCLAIR, MB ;
VALENCIA, VS ;
CAHILL, PA .
APPLIED PHYSICS LETTERS, 1995, 66 (26) :3618-3620
[6]   Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss [J].
Kondakov, DY ;
Sandifer, JR ;
Tang, CW ;
Young, RH .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :1108-1119
[7]   High-efficiency tandem organic light-emitting diodes [J].
Liao, LS ;
Klubek, KP ;
Tang, CW .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :167-169
[8]   ELECTROLUMINESCENCE OF DOPED ORGANIC THIN-FILMS [J].
TANG, CW ;
VANSLYKE, SA ;
CHEN, CH .
JOURNAL OF APPLIED PHYSICS, 1989, 65 (09) :3610-3616
[9]   ORGANIC ELECTROLUMINESCENT DIODES [J].
TANG, CW ;
VANSLYKE, SA .
APPLIED PHYSICS LETTERS, 1987, 51 (12) :913-915