Stability criterion for synchronization of linearly coupled unified chaotic systems

被引:71
作者
Park, JH [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Robust Control & Nonlinear Dynam Lab, 214-1 Dae Dong, Kyongsan 712749, South Korea
关键词
D O I
10.1016/j.chaos.2004.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the synchronization of two linearly coupled unified chaotic systems. A new stability criterion for asymptotic synchronization is attained using the Lyapunov stability theory and linear matrix inequality (LMI) approach. A numerical example is given to illuminate the design procedure and advantage of the result derived. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1319 / 1325
页数:7
相关论文
共 19 条
[1]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[2]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[3]  
Chen G., 1998, CHAOS ORDER
[4]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[5]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[6]   Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller [J].
Chen, SH ;
Wang, F ;
Wang, CP .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :235-243
[7]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[8]  
Gahinet P., 1995, LMI Control Toolbox
[9]   A linear continuous feedback control of Chua's circuit [J].
Hwang, CC ;
Hsieh, JY ;
Lin, RS .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1507-1515
[10]   Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems [J].
Li, D ;
Lu, JA ;
Wu, XQ .
CHAOS SOLITONS & FRACTALS, 2005, 23 (01) :79-85