Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size and Thickness Reduction

被引:77
作者
Benson, John [1 ]
Xu, Qian [2 ,3 ]
Wang, Peng [2 ,3 ]
Shen, Yuting [4 ]
Sun, Litao [4 ]
Wang, Tanyuan [5 ]
Li, Meixian [5 ]
Papakonstantinou, Pagona [1 ]
机构
[1] Univ Ulster, Engn Res Inst, Sch Engn, Newtownabbey BT37 0QB, North Ireland
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China
[5] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
graphene nanosheets; oxygen reduction reaction; electrocatalyst; edges; ionic liquid exfoliation; NITROGEN-DOPED GRAPHENE; METALLIC IMPURITIES; CARBON NANOTUBES; FUEL-CELLS; RAMAN-SPECTROSCOPY; ELECTRON-TRANSFER; SINGLE-LAYER; GRAPHITE; EDGE; ELECTROCATALYSTS;
D O I
10.1021/am5048202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (<2.5 +/- 0.2 at. %), few layer graphene nanosheets with lateral dimensions smaller than a few hundred nanometers were achieved using a combination of ionic liquid assisted grinding of high purity graphite coupled with sequential centrifugation. We show for the first time that the graphene nanosheets possessing a plethora of edges exhibited considerably higher electron transfer numbers compared to the thicker graphene nanoplatelets. This enhanced ORR activity was accomplished by successfully exploiting the plethora of edges of the nanosized graphene as well as the efficient electron communication between the active edge sites and the electrode substrate. The graphene nanosheets were characterized by an onset potential of -0.13 V vs Ag/AgCl and a current density of -3.85 mA/cm(2) at -1 V, which represent the best ORR performance ever achieved from an undoped carbon based catalyst. This work demonstrates how low oxygen content nanosized graphene synthesized by a simple route can considerably impact the ORR catalytic activity and hence it is of significance in designing and optimizing advanced metal-free ORR electrocatalysts.
引用
收藏
页码:19726 / 19736
页数:11
相关论文
共 69 条
[1]   Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Khezri, Bahareh ;
Sofer, Zdenek ;
Webster, Richard D. ;
Pumera, Martin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (32) :12899-12904
[2]   Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties [J].
Ambrosi, Adriano ;
Chee, Sze Yin ;
Khezri, Bahareh ;
Webster, Richard D. ;
Sofer, Zdenek ;
Pumera, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (02) :500-503
[3]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[4]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[5]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[6]   Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons [J].
Cheon, Jae Yeong ;
Kim, Jong Hun ;
Kim, Jae Hyung ;
Goddeti, Kalyan C. ;
Park, Jeong Young ;
Joo, Sang Hoon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :8875-8878
[7]   Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities [J].
Choi, Chang Hyuck ;
Lim, Hyung-Kyu ;
Chung, Min Wook ;
Park, Jong Cheol ;
Shin, Hyeyoung ;
Kim, Hyungjun ;
Woo, Seong Ihl .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :9070-9077
[8]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[9]   Size effect of graphene on electrocatalytic activation of oxygen [J].
Deng, Dehui ;
Yu, Liang ;
Pan, Xiulian ;
Wang, Shuang ;
Chen, Xiaoqi ;
Hu, P. ;
Sun, Lixian ;
Bao, Xinhe .
CHEMICAL COMMUNICATIONS, 2011, 47 (36) :10016-10018
[10]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758