Fast nearest-neighbor searching for nonlinear signal processing

被引:46
作者
Merkwirth, C [1 ]
Parlitz, U [1 ]
Lauterborn, W [1 ]
机构
[1] Univ Gottingen, Drittes Phys Inst, D-37073 Gottingen, Germany
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.2089
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A fast algorithm for exact and approximate nearest-neighbor searching is presented that is suitable for tasks encountered in nonlinear signal processing. Empirical benchmarks show that the algorithm's performance depends mainly on the (fractal) dimension D-d of the data set, which is usually smaller than the dimension D-s of the vector space in which the data points are embedded. We also compare the running time of our algorithm with those of two previously proposed algorithms for nearest-neighbor searching.
引用
收藏
页码:2089 / 2097
页数:9
相关论文
共 16 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   An optimal algorithm for approximate nearest neighbor searching in fixed dimensions [J].
Arya, S ;
Mount, DM ;
Netanyahu, NS ;
Silverman, R ;
Wu, AY .
JOURNAL OF THE ACM, 1998, 45 (06) :891-923
[3]   MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS [J].
BAIER, G ;
KLEIN, M .
PHYSICS LETTERS A, 1990, 151 (6-7) :281-284
[4]   DESIGN OF HYPERCHAOTIC FLOWS [J].
BAIER, G ;
SAHLE, S .
PHYSICAL REVIEW E, 1995, 51 (04) :R2712-R2714
[5]  
Berchtold S., 1997, Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1997, P78, DOI 10.1145/263661.263671
[6]  
CHENG DY, 1984, P IEEE INT C AC SPEE
[7]  
Grassberger Peter, 1993, Chaos, V3, P127, DOI 10.1063/1.165979
[8]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[9]  
Kantz H, 1997, Nonlinear Time Series Analysis
[10]  
McNames J., 1998, P INT WORKSH ADV BLA, P112