In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly with increasing microfibril angle. While the elastic moduli of cell walls with large microfibril angle agreed well with published values, the elastic moduli of cell walls with small microfibril angle were clearly underestimated in nanoindentation measurements. Hardness measurements in the cell corner middle lamella allowed us to estimate the yield stress of the cell-wall matrix to be 0.34+/-0.16 GPa. Since the hardness of the secondary cell wall was statistically not different from the hardness of the cell corner middle lamella, irrespective of high variability in cellulose microfibril angle, it is proposed that compressive yielding of wood-cell walls is a matrix-dominated process.
机构:
IBM Corp, Div Gen Prod, San Jose, CA 95193 USA
Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USAIBM Corp, Div Gen Prod, San Jose, CA 95193 USA
Doerner, M. F.
Nix, W. D.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USAIBM Corp, Div Gen Prod, San Jose, CA 95193 USA
机构:
IBM Corp, Div Gen Prod, San Jose, CA 95193 USA
Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USAIBM Corp, Div Gen Prod, San Jose, CA 95193 USA
Doerner, M. F.
Nix, W. D.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USAIBM Corp, Div Gen Prod, San Jose, CA 95193 USA