Needle-shaped polymeric particles induce transient disruption of cell membranes

被引:67
作者
Doshi, Nishit [1 ]
Mitragotri, Samir [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
nanotoxicology; toxicity; drug delivery; shape; nanotube; nanoparticle; DRUG-DELIVERY; CARBON NANOTUBES; NANOPARTICLES; SIZE; BIODISTRIBUTION; MICROPARTICLES; TOXICITY; SYSTEMS; DESIGN;
D O I
10.1098/rsif.2010.0134.focus
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nano- and microparticles of various shapes have recently been introduced for various drug-delivery applications. Shape of particles has been shown to have an impact on various processes including circulation, vascular adhesion and phagocytosis. Here, we assess the role of particle geometry and surface chemistry in their interactions with cell membranes. Using representative particles of different shape (spheres, elongated and flat particles), size (500 nm(-1) mu m) and surface chemistry (positively and negatively charged), we evaluated the response of endothelial cells to particles. While spherical and elliptical disc-shaped particles did not have an impact on cell spreading and motility, needle-shaped particles induced significant changes in the same. Further studies revealed that needle-shaped particles induced disruption of cell membranes as indicated by the release of lactate dehydrogenase and uptake of extracellular calcein. The effect of needle-shaped particles on cells was transient and was reversed over a time period of 1-48 h depending on particle parameters.
引用
收藏
页码:S403 / S410
页数:8
相关论文
共 43 条
[1]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[2]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[3]  
Beningo KA, 2002, J CELL SCI, V115, P849
[4]   RECENT ADVANCES ON THE USE OF BIODEGRADABLE MICROPARTICLES AND NANOPARTICLES IN CONTROLLED DRUG-DELIVERY [J].
BRANNONPEPPAS, L .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1995, 116 (01) :1-9
[5]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[6]   Quantitative study of electroporation-mediated molecular uptake and cell viability [J].
Canatella, PJ ;
Karr, JF ;
Petros, JA ;
Prausnitz, MR .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :755-764
[7]   Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery [J].
Canelas, Dorian A. ;
Herlihy, Kevin P. ;
DeSimone, Joseph M. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2009, 1 (04) :391-404
[8]   Role of target geometry in phagocytosis [J].
Champion, JA ;
Mitragotri, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) :4930-4934
[9]   Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) :3-9
[10]   Making polymeric micro- and nanoparticles of complex shapes [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (29) :11901-11904