Autotrophic carbon fixation in archaea

被引:516
作者
Berg, Ivan A. [1 ]
Kockelkorn, Daniel [1 ]
Ramos-Vera, W. Hugo [1 ]
Say, Rafael F. [1 ]
Zarzycki, Jan [1 ]
Huegler, Michael [1 ]
Alber, Birgit E. [1 ]
Fuchs, Georg [1 ]
机构
[1] Univ Freiburg, Fak Biol, D-79104 Freiburg, Germany
关键词
CENTRAL CARBOHYDRATE-METABOLISM; RIBULOSE MONOPHOSPHATE PATHWAY; COENZYME-A REDUCTASE; CO2; FIXATION; 3-HYDROXYPROPIONATE CYCLE; CHLOROFLEXUS-AURANTIACUS; METALLOSPHAERA-SEDULA; GENOMIC ANALYSIS; PHOSPHOENOLPYRUVATE CARBOXYLASE; MONOXIDE DEHYDROGENASE;
D O I
10.1038/nrmicro2365
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The acquisition of cellular carbon from inorganic carbon is a prerequisite for life and marked the transition from the inorganic to the organic world. Recent theories of the origins of life assume that chemoevolution took place in a hot volcanic flow setting through a transition metal-catalysed, autocatalytic carbon fixation cycle. Many archaea live in volcanic habitats under such constraints, in high temperatures with only inorganic substances and often under anoxic conditions. In this Review, we describe the diverse carbon fixation mechanisms that are found in archaea. These reactions differ fundamentally from those of the well-known Calvin cycle, and their distribution mirrors the phylogenetic positions of the archaeal lineages and the needs of the ecological niches that they occupy.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 123 条
[61]   The physiological role of the ribulose monophosphate pathway in bacteria and archaea [J].
Kato, N ;
Yurimoto, H ;
Thauer, RK .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2006, 70 (01) :10-21
[62]   Evolution of CAM and C4 carbon-concentrating mechanisms [J].
Keeley, JE ;
Rundel, PW .
INTERNATIONAL JOURNAL OF PLANT SCIENCES, 2003, 164 (03) :S55-S77
[63]   The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus [J].
Klenk, HP ;
Clayton, RA ;
Tomb, JF ;
White, O ;
Nelson, KE ;
Ketchum, KA ;
Dodson, RJ ;
Gwinn, M ;
Hickey, EK ;
Peterson, JD ;
Richardson, DL ;
Kerlavage, AR ;
Graham, DE ;
Kyrpides, NC ;
Fleischmann, RD ;
Quackenbush, J ;
Lee, NH ;
Sutton, GG ;
Gill, S ;
Kirkness, EF ;
Dougherty, BA ;
McKenney, K ;
Adams, MD ;
Loftus, B ;
Peterson, S ;
Reich, CI ;
McNeil, LK ;
Badger, JH ;
Glodek, A ;
Zhou, LX ;
Overbeek, R ;
Gocayne, JD ;
Weidman, JF ;
McDonald, L ;
Utterback, T ;
Cotton, MD ;
Spriggs, T ;
Artiach, P ;
Kaine, BP ;
Sykes, SM ;
Sadow, PW ;
DAndrea, KP ;
Bowman, C ;
Fujii, C ;
Garland, SA ;
Mason, TM ;
Olsen, GJ ;
Fraser, CM ;
Smith, HO ;
Woese, CR .
NATURE, 1997, 390 (6658) :364-&
[64]   Malonic Semialdehyde Reductase, Succinic Semialdehyde Reductase, and Succinyl-Coenzyme A Reductase from Metallosphaera sedula: Enzymes of the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle in Sulfolobales [J].
Kockelkorn, Daniel ;
Fuchs, Georg .
JOURNAL OF BACTERIOLOGY, 2009, 191 (20) :6352-6362
[65]   Substitutions at methionine 295 of Archaeoglobus fulgidus ribulose-1,5-bisphosphate carboxylase/oxygenase affect oxygen binding and CO2/O2 specificity [J].
Kreel, Nathaniel E. ;
Tabita, F. Robert .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1341-1351
[66]  
KUMMER C, 1999, GLAUBE CHRISTEN OKUM, P25
[67]   THE AUTOTROPHIC PATHWAY OF ACETATE SYNTHESIS IN ACETOGENIC BACTERIA [J].
LJUNGDAHL, LG .
ANNUAL REVIEW OF MICROBIOLOGY, 1986, 40 :415-450
[68]   Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: Structural analysis of reaction intermediates [J].
Lorentzen, E ;
Siebers, B ;
Hensel, R ;
Pohl, E .
BIOCHEMISTRY, 2005, 44 (11) :4222-4229
[69]   The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability [J].
Maeda, N ;
Kanai, T ;
Atomi, H ;
Imanaka, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (35) :31656-31662
[70]   Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea [J].
Makarova, Kira S. ;
Sorokin, Alexander V. ;
Novichkov, Pavel S. ;
Wolf, Yuri I. ;
Koonin, Eugene V. .
BIOLOGY DIRECT, 2007, 2 (1)