Methodologies for Developing Surface-Enhanced Raman Scattering (SERS) Substrates for Detection of Chemical and Biological Molecules

被引:29
作者
Dhawan, Anuj [1 ]
Du, Yan [2 ]
Yan, Fei [3 ]
Gerhold, Michael D. [1 ]
Misra, Veena [2 ]
Vo-Dinh, Tuan
机构
[1] USA, Res Off, Durham, NC 27703 USA
[2] N Carolina State Univ, Raleigh, NC 27695 USA
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
基金
美国国家卫生研究院;
关键词
Annealing; focused ion beam; nanoislands; nanopillars; nanowires; surface-enhanced Raman scattering (SERS); surface plasmons; PLASMON RESONANCE; SPECTRA; SPECTROSCOPY; NANOPARTICLES;
D O I
10.1109/JSEN.2009.2038634
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes methodologies for developing efficient surface-enhanced Raman scattering (SERS) substrates such as annealing thin gold films for developing gold nanoislands, fabrication of nanopillars arrays and roughened films by employing focused ion beam (FIB) milling of gold films, as well as overcoating deep-UV-fabricated silicon nanowires with a layer of gold film. Excitation of surface plasmons in these gold nanostructures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. In this paper, we perform comparative studies of SERS signals from molecules such as p-mercaptobenzoic acid and cresyl fast violet attached to or adsorbed on various gold SERS substrates. It was observed that gold-coated silicon nanowire substrates and annealed gold island substrates provided considerably higher SERS signals as compared to those from the FIB patterned substrates and planar gold films. The SERS substrates developed by the different processes were employed for detection of biological molecules such as dipicolinic acid, an excellent marker for spores of bacteria such as Anthrax.
引用
收藏
页码:608 / 616
页数:9
相关论文
共 42 条
[21]   Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics [J].
Liu, GL ;
Lee, LP .
APPLIED PHYSICS LETTERS, 2005, 87 (07)
[22]   CHARGE-TRANSFER THEORY OF SURFACE ENHANCED RAMAN-SPECTROSCOPY - HERZBERG-TELLER CONTRIBUTIONS [J].
LOMBARDI, JR ;
BIRKE, RL ;
LU, TH ;
XU, J .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (08) :4174-4180
[23]   Surface shape resonances in lamellar metallic gratings [J].
Lopez-Rios, T ;
Mendoza, D ;
Garcia-Vidal, FJ ;
Sanchez-Dehesa, J ;
Pannetier, B .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :665-668
[24]  
Maier SA, 2001, ADV MATER, V13, P1501, DOI 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO
[25]  
2-Z
[26]   Plasmonic detection of a model analyte in serum by a gold nanorod sensor [J].
Marinakos, Stella M. ;
Chen, Sihai ;
Chilkoti, Ashutosh .
ANALYTICAL CHEMISTRY, 2007, 79 (14) :5278-5283
[27]   SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles [J].
Matsui, J ;
Akamatsu, K ;
Hara, N ;
Miyoshi, D ;
Nawafune, H ;
Tamaki, K ;
Sugimoto, N .
ANALYTICAL CHEMISTRY, 2005, 77 (13) :4282-4285
[28]   Local refractive index dependence of plasmon resonance spectra from individual nanoparticles [J].
Mock, JJ ;
Smith, DR ;
Schultz, S .
NANO LETTERS, 2003, 3 (04) :485-491
[29]   SURFACE-ENHANCED SPECTROSCOPY [J].
MOSKOVITS, M .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :783-826
[30]   Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory [J].
Neugebauer, J ;
Hess, BA .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (24) :11564-11577