Spectrum and range of oxidative stress responses of human lens epithelial cells to H2O2 insult

被引:64
作者
Goswami, S
Sheets, NL
Zavadil, J
Chauhan, BK
Bottinger, EP
Reddy, VN
Kantorow, M
Cvekl, A
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Ophthalmol & Visual Sci, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Mol Genet, Bronx, NY 10461 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Med, Bronx, NY 10461 USA
[4] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA
[5] Univ Michigan, Dept Ophthalmol & Visual Sci, Ann Arbor, MI 48109 USA
关键词
D O I
10.1167/iovs.02-0882
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. Oxidative stress (OS) is believed to be a major contributor to age-related cataract and other age-related diseases. METHODS. cDNA microarrays were used to identify the spectrum and range of genes with transcript levels that are altered in response to acute H2O2-induced OS in human lens epithelial (HLE) cells. HLE cells were treated with 50 muM H2O2 for 1 hour in the absence of serum, followed by a return to complete medium. RNAs were prepared from treated and untreated cells at 0, 1, 2, and 8 hours after H2O2 treatment. RESULTS. The data showed 1171 genes that were significantly up- and downregulated in response to H2O2 treatment. Several functional subcategories of genes were identified, including those encoding DNA repair proteins, antioxidant defense enzymes, molecular chaperones, protein biosynthesis enzymes, and trafficking and degradation proteins. Differential expression of selected genes was confirmed at the level of RNA and/or protein. Many of the identified genes (e.g., glutathione S-transferase [MGST2], thioredoxin reductase 0, and peroxiredoxin 2) have been identified as participants in OS responses in the lens and other systems. Some genes induced by OS in the current study (e.g., oxygen regulated protein [ORP 150] and heat shock protein [HSP40]) are better known to respond to other forms of stress. Two genes (receptor tyrosine kinase [AXL/ARK] and protein phosphatase 2A) are known to be differentially expressed in cataract. Most of the genes point to a novel pathways associated with OS. CONCLUSIONS. The present data provide a global perspective on those genes that respond to acute OS, point to novel genes and pathways associated with OS, and set the groundwork for understanding the functions of OS-related genes in lens protection and disease.
引用
收藏
页码:2084 / 2093
页数:10
相关论文
共 52 条
[1]   The mitochondrial apoptosome: a killer unleashed by the cytochrome seas [J].
Adrain, C ;
Martin, SJ .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (06) :390-397
[2]   Oxidative stress and gene regulation [J].
Allen, RG ;
Tresini, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (03) :463-499
[3]   Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions [J].
Amado, M ;
Almeida, R ;
Schwientek, T ;
Clausen, H .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1473 (01) :35-53
[4]   Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C [J].
Bartolini, F ;
Bhamidipati, A ;
Thomas, S ;
Schwahn, U ;
Lewis, SA ;
Cowan, NJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (17) :14629-14634
[5]   The role of oxidative stress in the pathogenesis of age-related macular degeneration [J].
Beatty, S ;
Koh, HH ;
Henson, D ;
Boulton, M .
SURVEY OF OPHTHALMOLOGY, 2000, 45 (02) :115-134
[6]   Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J].
Beere, HM ;
Wolf, BB ;
Cain, K ;
Mosser, DD ;
Mahboubi, A ;
Kuwana, T ;
Tailor, P ;
Morimoto, RI ;
Cohen, GM ;
Green, DR .
NATURE CELL BIOLOGY, 2000, 2 (08) :469-475
[7]  
BIRLOUEZARAGON I, 1993, J NUTR, V123, P1370
[8]   TorsinA: Movement at many levels [J].
Breakefield, XO ;
Kamm, C ;
Hanson, PI .
NEURON, 2001, 31 (01) :9-12
[9]  
BROWN NP, 1996, LENS DISORDER
[10]  
Carper DA, 1999, INVEST OPHTH VIS SCI, V40, P400