Simultaneous two-photon spectral and lifetime fluorescence microscopy

被引:91
作者
Bird, DK [1 ]
Eliceiri, KW [1 ]
Fan, CH [1 ]
White, JG [1 ]
机构
[1] Univ Wisconsin, Lab Opt & Computat Instrumentat, Dept Mol Biol, Madison, WI 53706 USA
关键词
D O I
10.1364/AO.43.005173
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a fluorescence photon is emitted from a molecule within a living cell it carries a signature that can potentially identify the molecule and provide information on the microenvironment in which it resides, thereby providing insights into the physiology of the cell. To unambiguously identify fluorescent probes and monitor their physiological environment within living specimens by their fluorescent signatures, one must exploit as much of this information as possible. We describe the development and implementation of a combined two-photon spectral and lifetime microscope. Fluorescence lifetime images from 16 individual wavelength components of the emission spectrum can be acquired with 10-nm resolution on a pixel-by-pixel basis. The instrument provides a unique visualization of cellular structures and processes through spectrally and temporally resolved information and may ultimately find applications in live cell and tissue imaging. (C) 2004 Optical Society of America.
引用
收藏
页码:5173 / 5182
页数:10
相关论文
共 26 条
[1]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[2]  
BECKER, 2002, P SOC PHOTO-OPT INS, V4620, P74
[3]   Fluorescence lifetime imaging by time-correlated single-photon counting [J].
Becker, W ;
Bergmann, A ;
Hink, MA ;
König, K ;
Benndorf, K ;
Biskup, C .
MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 63 (01) :58-66
[4]   Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging [J].
Centonze, VE ;
White, JG .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2015-2024
[5]   Time-domain whole-field fluorescence lifetime imaging with optical sectioning [J].
Cole, MJ ;
Siegel, J ;
Webb, SED ;
Jones, R ;
Dowling, K ;
Dayel, MJ ;
Parsons-Karavassilis, D ;
French, PMW ;
Lever, MJ ;
Sucharov, LOD ;
Neil, MAA ;
Juskaitis, R ;
Wilson, T .
JOURNAL OF MICROSCOPY, 2001, 203 (03) :246-257
[6]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[7]   Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy [J].
Dickinson, ME ;
Bearman, G ;
Tille, S ;
Lansford, R ;
Fraser, SE .
BIOTECHNIQUES, 2001, 31 (06) :1272-+
[8]   Multiphoton excitation spectra in biological samples [J].
Dickinson, ME ;
Simbuerger, E ;
Zimmermann, B ;
Waters, CW ;
Fraser, SE .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :329-338
[9]   Analysis of histology specimens using lifetime multiphoton microscopy [J].
Eliceiri, KW ;
Fan, CH ;
Lyons, GE ;
White, JG .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :376-380
[10]   FLUORESCENCE LIFETIME IMAGING MICROSCOPY (FLIM) - SPATIAL-RESOLUTION OF MICROSTRUCTURES ON THE NANOSECOND TIME-SCALE [J].
GADELLA, TWJ ;
JOVIN, TM ;
CLEGG, RM .
BIOPHYSICAL CHEMISTRY, 1993, 48 (02) :221-239