Using nonorthogonal Lanczos vectors in the computation of matrix functions

被引:57
作者
Druskin, V
Greenbaum, A
Knizhnerman, L
机构
[1] Schlumberger Doll Res Ctr, Ridgefield, CT 06877 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Cent Geophys Expedit, Moscow 123298, Russia
关键词
Lanczos algorithm; iterative methods; matrix exponential; finite precision arithmetic;
D O I
10.1137/S1064827596303661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lanczos algorithm uses a three-term recurrence to construct an orthonormal basis for the Krylov space corresponding to a symmetric matrix A and a nonzero starting vector phi. The vectors and recurrence coefficients produced by this algorithm can be used for a number of purposes, including solving linear systems Au = phi and computing the matrix exponential e(-tA)phi. Although the vectors produced in finite precision arithmetic are not orthogonal, we show why they can still be used effectively for these purposes.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 29 条
[2]   Iterative methods for solving Ax=b, GMRES/FOM versus QMR/BiCG [J].
Cullum, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (01) :1-24
[3]   2 POLYNOMIAL METHODS OF CALCULATING FUNCTIONS OF SYMMETRICAL MATRICES [J].
DRUSKIN, VL ;
KNIZHNERMAN, LA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06) :112-121
[4]  
DRUSKIN VL, 1991, COMP MATH MATH PHYS+, V31, P20
[5]  
DRUSKIN VL, 1988, B ACAD SCI USSR PHYS, V24, P641
[6]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[7]  
Friesner R. A., 1989, Journal of Scientific Computing, V4, P327, DOI 10.1007/BF01060992
[8]  
GALLOPOULLOS E, 1991, UNPUB EXPONENTIAL PR
[9]   EFFICIENT SOLUTION OF PARABOLIC EQUATIONS BY KRYLOV APPROXIMATION METHODS [J].
GALLOPOULOS, E ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05) :1236-1264
[10]  
Golub G., 1994, Numerical Algorithms, V8, P241, DOI 10.1007/BF02142693