Genetic diversity of Escherichia coli isolated from urban rivers and beach water

被引:92
作者
McLellan, SL [1 ]
机构
[1] Univ Wisconsin, Milwaukee Great Lakes WATER Inst, Milwaukee, WI 53204 USA
关键词
D O I
10.1128/AEM.70.8.4658-4665.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.
引用
收藏
页码:4658 / 4665
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 1986, EPA440584002
[2]   SOURCES OF POLLUTANTS IN WISCONSIN STORMWATER [J].
BANNERMAN, RT ;
OWENS, DW ;
DODDS, RB ;
HORNEWER, NJ .
WATER SCIENCE AND TECHNOLOGY, 1993, 28 (3-5) :241-259
[3]  
Begon M, 1986, Ecology
[4]   Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes [J].
Bernhard, AE ;
Field, KG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1587-1594
[5]   Tiered approach for identification of a human fecal pollution source at a recreational beach: Case study at Avalon Cay, Catalina Island, California [J].
Boehm, AB ;
Fuhrman, JA ;
Mrse, RD ;
Grant, SB .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (04) :673-680
[6]   F-specific RNA coliphages: occurrence, types, and survival in natural waters [J].
Brion, GM ;
Meschke, JS ;
Sobsey, MD .
WATER RESEARCH, 2002, 36 (09) :2419-2425
[7]   Ubiquity and persistence of Escherichia coli in a Midwestern coastal stream [J].
Byappanahalli, M ;
Fowler, M ;
Shively, D ;
Whitman, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (08) :4549-4555
[8]   Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichia coli from humans and animals [J].
Carson, CA ;
Shear, BL ;
Ellersieck, MR ;
Schnell, JD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1836-1839
[9]   Identification of fecal Escherichia coli from humans and animals by ribotyping [J].
Carson, CA ;
Shear, BL ;
Ellersieck, MR ;
Asfaw, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (04) :1503-1507
[10]   Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters [J].
Cole, D ;
Long, SC ;
Sobsey, MD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (11) :6507-6514