Growth, electronic and magnetic properties of doped ZnO epitaxial and nanocrystalline films

被引:13
作者
Chambers, S. A.
Schwartz, D. A.
Liu, W. K.
Kittilstved, K. R.
Gamelin, D. R.
机构
[1] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2007年 / 88卷 / 01期
关键词
D O I
10.1007/s00339-007-3948-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co: ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co: ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn: ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co: ZnO and O-capped Mn: ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co( I) <-> Co( II)+ e(CB)(-) and Mn(III) <-> Mn(II)+ h(VB)(+) are energetically favorable, consistent with strong hybridization of Co ( Mn) with the conduction ( valence) band of ZnO. In contrast, the resonances Mn(I) <-> Mn( II)+ e(CB)(-) and Co(III) <-> Co( II)+ h(VB)(+) are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co: ZnO ( Mn: ZnO) is mediated by electrons ( holes).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 25 条
[11]   On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system [J].
Kundaliya, DC ;
Ogale, SB ;
Lofland, SE ;
Dhar, S ;
Metting, CJ ;
Shinde, SR ;
Ma, Z ;
Varughese, B ;
Ramanujachary, KV ;
Salamanca-Riba, L ;
Venkatesan, T .
NATURE MATERIALS, 2004, 3 (10) :709-714
[12]  
Lever A.B. P., 1984, Inorganic Electronic Spectroscopy, V2nd
[13]  
Liu WK, 2005, J PHYS CHEM B, V109, P14486, DOI 10.1021/jp0518781
[14]   Residual native shallow donor in ZnO [J].
Look, DC ;
Hemsky, JW ;
Sizelove, JR .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2552-2555
[15]   P-type doping and devices based on ZnO [J].
Look, DC ;
Claftin, B .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (03) :624-630
[16]   LOW-TEMPERATURE CONDUCTIVITY OF ZNO FILMS PREPARED BY CHEMICAL VAPOR-DEPOSITION [J].
NATSUME, Y ;
SAKATA, H ;
HIRAYAMA, T ;
YANAGIDA, H .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (09) :4203-4207
[17]   Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films [J].
Norberg, NS ;
Kittilstved, KR ;
Amonette, JE ;
Kukkadapu, RK ;
Schwartz, DA ;
Gamelin, DR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (30) :9387-9398
[18]   First principles materials design for semiconductor spintronics [J].
Sato, K ;
Katayama-Yoshida, H .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (04) :367-376
[19]   Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor [J].
Schwartz, DA ;
Gamelin, DR .
ADVANCED MATERIALS, 2004, 16 (23-24) :2115-+
[20]   Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J].
Sharma, P ;
Gupta, A ;
Rao, KV ;
Owens, FJ ;
Sharma, R ;
Ahuja, R ;
Guillen, JMO ;
Johansson, B ;
Gehring, GA .
NATURE MATERIALS, 2003, 2 (10) :673-677