Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

被引:80
作者
Nishito, Yukari [1 ]
Osana, Yasunori [2 ]
Hachiya, Tsuyoshi [1 ]
Popendorf, Kris [1 ]
Toyoda, Atsushi [3 ]
Fujiyama, Asao [4 ]
Itaya, Mitsuhiro [5 ]
Sakakibara, Yasubumi [1 ]
机构
[1] Keio Univ, Dept Biosci & Informat, Kohoku Ku, Yokohama, Kanagawa 223, Japan
[2] Seikei Univ, Dept Comp & Informat Sci, Tokyo, Japan
[3] Natl Inst Genet, Ctr Genet Resource Informat, Shizuoka, Japan
[4] Natl Inst Informat, Principles Informat Res Div, Tokyo, Japan
[5] Keio Univ, Inst Adv Biosci, Tokyo, Japan
来源
BMC GENOMICS | 2010年 / 11卷
基金
日本科学技术振兴机构;
关键词
SEQUENCE; GENES; DNA; IDENTIFICATION; MECHANISM; PLASMIDS; ACID;
D O I
10.1186/1471-2164-11-243
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although resequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results: We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions: The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks. Multiple genome-level comparisons among five closely related Bacillus species were also carried out. The determined genome sequence of B. subtilis natto and gene annotations are available from the Natto genome browser http://natto-genome.org/.
引用
收藏
页数:12
相关论文
共 40 条
[11]   Accurate identification of orthologous segments among multiple genomes [J].
Hachiya, Tsuyoshi ;
Osana, Yasunori ;
Popendorf, Kris ;
Sakakibara, Yasubumi .
BIOINFORMATICS, 2009, 25 (07) :853-860
[12]   De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer [J].
Hernandez, David ;
Francois, Patrice ;
Farinelli, Laurent ;
Osteras, Magne ;
Schrenzel, Jacques .
GENOME RESEARCH, 2008, 18 (05) :802-809
[13]   Whole-genome sequencing and variant discovery in C-elegans [J].
Hillier, LaDeana W. ;
Marth, Gabor T. ;
Quinlan, Aaron R. ;
Dooling, David ;
Fewell, Ginger ;
Barnett, Derek ;
Fox, Paul ;
Glasscock, Jarret I. ;
Hickenbotham, Matthew ;
Huang, Weichun ;
Magrini, Vincent J. ;
Richt, Ryan J. ;
Sander, Sacha N. ;
Stewart, Donald A. ;
Stromberg, Michael ;
Tsung, Eric F. ;
Wylie, Todd ;
Schedl, Tim ;
Wilson, Richard K. ;
Mardis, Elaine R. .
NATURE METHODS, 2008, 5 (02) :183-188
[14]   Conversion of Bacillus subtilis 168:: Natto producing Bacillus subtilis with mosaic genomes [J].
Itaya, M ;
Matsui, K .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1999, 63 (11) :2034-2037
[15]   Conjugational transfer kinetics of pLS20 between Bacillus subtilis in liquid medium [J].
Itaya, M ;
Sakaya, N ;
Matsunaga, S ;
Fujita, K ;
Kaneko, S .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2006, 70 (03) :740-742
[16]   Extending assembly of short DNA sequences to handle error [J].
Jeck, William R. ;
Reinhardt, Josephine A. ;
Baltrus, David A. ;
Hickenbotham, Matthew T. ;
Magrini, Vincent ;
Mardis, Elaine R. ;
Dangl, Jeffery L. ;
Jones, Corbin D. .
BIOINFORMATICS, 2007, 23 (21) :2942-2944
[17]   Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility [J].
Kearns, DB ;
Chu, F ;
Rudner, R ;
Losick, R .
MOLECULAR MICROBIOLOGY, 2004, 52 (02) :357-369
[18]   Determination and characterization of IS4Bsu1-insertion loci and identification of a new insertion sequence element of the IS256 family in a natto starter [J].
Kimura, Keitarou ;
Itoh, Yoshifumi .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2007, 71 (10) :2458-2464
[19]   The complete genome sequence of the Gram-positive bacterium Bacillus subtilis [J].
Kunst, F ;
Ogasawara, N ;
Moszer, I ;
Albertini, AM ;
Alloni, G ;
Azevedo, V ;
Bertero, MG ;
Bessieres, P ;
Bolotin, A ;
Borchert, S ;
Borriss, R ;
Boursier, L ;
Brans, A ;
Braun, M ;
Brignell, SC ;
Bron, S ;
Brouillet, S ;
Bruschi, CV ;
Caldwell, B ;
Capuano, V ;
Carter, NM ;
Choi, SK ;
Codani, JJ ;
Connerton, IF ;
Cummings, NJ ;
Daniel, RA ;
Denizot, F ;
Devine, KM ;
Dusterhoft, A ;
Ehrlich, SD ;
Emmerson, PT ;
Entian, KD ;
Errington, J ;
Fabret, C ;
Ferrari, E ;
Foulger, D ;
Fritz, C ;
Fujita, M ;
Fujita, Y ;
Fuma, S ;
Galizzi, A ;
Galleron, N ;
Ghim, SY ;
Glaser, P ;
Goffeau, A ;
Golightly, EJ ;
Grandi, G ;
Guiseppi, G ;
Guy, BJ ;
Haga, K .
NATURE, 1997, 390 (6657) :249-256
[20]   Mapping short DNA sequencing reads and calling variants using mapping quality scores [J].
Li, Heng ;
Ruan, Jue ;
Durbin, Richard .
GENOME RESEARCH, 2008, 18 (11) :1851-1858