Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase

被引:513
作者
Kobayashi, Michie
Ohura, Ikuko
Kawakita, Kazuhito
Yokota, Naohiko
Fujiwara, Masayuki
Shimamoto, Ko
Doke, Noriyuki
Yoshioka, Hirofumi [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Lab Def Plant Pathogen Interact, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Nara Inst Sci & Technol, Ikoma 6300101, Japan
[3] Nagoya Univ, Grad Sch Bioagr Sci, Plant Pathol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
D O I
10.1105/tpc.106.048884
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) are implicated in plant innate immunity. NADPH oxidase (RBOH; for Respiratory Burst Oxidase Homolog) plays a central role in the oxidative burst, and EF-hand motifs in the N terminus of this protein suggest possible regulation by Ca2+. However, regulatory mechanisms are largely unknown. We identified Ser-82 and Ser-97 in the N terminus of potato (Solanum tuberosum) St RBOHB as potential phosphorylation sites. An anti-phosphopeptide antibody (pSer82) indicated that Ser-82 was phosphorylated by pathogen signals in planta. We cloned two potato calcium-dependent protein kinases, St CDPK4 and St CDPK5, and mass spectrometry analyses showed that these CDPKs phosphorylated only Ser-82 and Ser-97 in the N terminus of St RBOHB in a calcium-dependent manner. Ectopic expression of the constitutively active mutant of St CDPK5, St CDPK5VK, provoked ROS production in Nicotiana benthamiana leaves. The CDPK-mediated ROS production was disrupted by knockdown of Nb RBOHB in N. benthamiana. The loss of function was complemented by heterologous expression of wild-type potato St RBOHB but not by a mutant (S82A/S97A). Furthermore, the heterologous expression of St CDPK5VK phosphorylated Ser-82 of St RBOHB in N. benthamiana. These results suggest that St CDPK5 induces the phosphorylation of St RBOHB and regulates the oxidative burst.
引用
收藏
页码:1065 / 1080
页数:16
相关论文
共 81 条
[1]   NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus) [J].
Amicucci, E ;
Gaschler, K ;
Ward, JM .
PLANT BIOLOGY, 1999, 1 (05) :524-528
[2]   Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5) [J].
Bánfi, B ;
Tirone, F ;
Durussel, I ;
Knisz, J ;
Moskwa, P ;
Molnár, GZ ;
Krause, KH ;
Cox, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18583-18591
[3]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[4]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[5]   Structural basis and prediction of substrate specificity in protein serine/threonine kinases [J].
Brinkworth, RI ;
Breinl, RA ;
Kobe, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :74-79
[6]   A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells [J].
Carol, RJ ;
Takeda, S ;
Linstead, P ;
Durrant, MC ;
Kakesova, H ;
Derbyshire, P ;
Drea, S ;
Zarsky, V ;
Dolan, L .
NATURE, 2005, 438 (7070) :1013-1016
[7]   Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells [J].
Chandra, S ;
Low, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (45) :28274-28280
[8]   Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J].
Cheng, SH ;
Willmann, MR ;
Chen, HC ;
Sheen, J .
PLANT PHYSIOLOGY, 2002, 129 (02) :469-485
[9]   The NADPH oxidase of professional phagocytes - prototype of the NOX electron transport chain systems [J].
Cross, AR ;
Segal, AW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 (01) :1-22
[10]   SIMILAR SUBSTRATE RECOGNITION MOTIFS FOR MAMMALIAN AMP-ACTIVATED PROTEIN-KINASE, HIGHER-PLANT HMG-COA REDUCTASE KINASE-A, YEAST SNF1, AND MAMMALIAN CALMODULIN-DEPENDENT PROTEIN-KINASE-I [J].
DALE, S ;
WILSON, WA ;
EDELMAN, AM ;
HARDIE, DG .
FEBS LETTERS, 1995, 361 (2-3) :191-195