Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 18 条
  • [1] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [2] Bright infrared emission from electrically induced excitons in carbon nanotubes
    Chen, J
    Perebeinos, V
    Freitag, M
    Tsang, J
    Fu, Q
    Liu, J
    Avouris, P
    [J]. SCIENCE, 2005, 310 (5751) : 1171 - 1174
  • [3] Peculiar localized state at zigzag graphite edge
    Fujita, M
    Wakabayashi, K
    Nakada, K
    Kusakabe, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) : 1920 - 1923
  • [4] Nanoelectromechanical switches with vertically aligned carbon nanotubes
    Jang, JE
    Cha, SN
    Choi, Y
    Amaratunga, GAJ
    Kang, DJ
    Hasko, DG
    Jung, JE
    Kim, JM
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (16) : 1 - 3
  • [5] Ballistic carbon nanotube field-effect transistors
    Javey, A
    Guo, J
    Wang, Q
    Lundstrom, M
    Dai, HJ
    [J]. NATURE, 2003, 424 (6949) : 654 - 657
  • [6] ELECTRONIC-STRUCTURE OF A STEPPED GRAPHITE SURFACE
    KOBAYASHI, K
    [J]. PHYSICAL REVIEW B, 1993, 48 (03): : 1757 - 1760
  • [7] Nanotube molecular wires as chemical sensors
    Kong, J
    Franklin, NR
    Zhou, CW
    Chapline, MG
    Peng, S
    Cho, KJ
    Dai, HJ
    [J]. SCIENCE, 2000, 287 (5453) : 622 - 625
  • [8] Bottom-up approach for carbon nanotube interconnects
    Li, J
    Ye, Q
    Cassell, A
    Ng, HT
    Stevens, R
    Han, J
    Meyyappan, M
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (15) : 2491 - 2493
  • [9] Single-walled carbon nanotube electronics
    McEuen, PL
    Fuhrer, MS
    Park, HK
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) : 78 - 85
  • [10] Electrically induced optical emission from a carbon nanotube FET
    Misewich, JA
    Martel, R
    Avouris, P
    Tsang, JC
    Heinze, S
    Tersoff, J
    [J]. SCIENCE, 2003, 300 (5620) : 783 - 786