Wigner functions from the two-dimensional wavelet group

被引:9
作者
Ali, ST [1 ]
Krasowska, AE
Murenzi, R
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[2] Clark Atlanta Univ, Ctr Theoret Studies Phys Syst, Atlanta, GA 30314 USA
[3] Clark Atlanta Univ, Dept Phys, Atlanta, GA 30314 USA
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 2000年 / 17卷 / 12期
关键词
D O I
10.1364/JOSAA.17.002277
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Following a general procedure developed previously [Ann. Henri Poincare 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function. (C) 2000 Optical Society of America [S0740-3232(00)02712-5] OCIS codes: 000.3860, 100.7410, 000.3870, 100.3010, 270.6570.
引用
收藏
页码:2277 / 2287
页数:11
相关论文
共 18 条
[1]   The Wigner function for general Lie groups and the wavelet transform [J].
Ali, ST ;
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
ANNALES HENRI POINCARE, 2000, 1 (04) :685-714
[2]  
[Anonymous], COHERENT STATES WAVE
[3]  
Antoine JP, 1995, P SOC PHOTO-OPT INS, V2485, P20, DOI 10.1117/12.213090
[4]  
Antoine JP, 1996, INT J IMAG SYST TECH, V7, P152, DOI 10.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO
[5]  
2-7
[6]   WAVELET ANALYSIS OF THE SELF-SIMILARITY OF DIFFUSION-LIMITED AGGREGATES AND ELECTRODEPOSITION CLUSTERS [J].
ARGOUL, F ;
ARNEODO, A ;
ELEZGARAY, J ;
GRASSEAU, G .
PHYSICAL REVIEW A, 1990, 41 (10) :5537-5560
[7]  
BASTIAANS MJ, 1979, J OPT SOC AM, V69, P1710, DOI 10.1364/JOSA.69.001710
[8]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[9]   Wavelets from square-integrable representations [J].
Bernier, D ;
Taylor, KF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :594-608
[10]  
BERTRAND J, 1984, CR ACAD SCI I-MATH, V299, P635