Self and spurious multi-affinity of ordinary Levy motion, and pseudo-Gaussian relations

被引:24
作者
Chechkin, AV
Gonchar, VY
机构
[1] Kharkov Phys & Technol Inst, Ctr Nat Sci, Inst Theoret Phys, UA-310108 Kharkov, Ukraine
[2] Kharkov Single Crystals Inst, UA-310001 Kharkov, Ukraine
关键词
D O I
10.1016/S0960-0779(99)00168-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ordinary Levy motion (oLm) is a random process whose stationary. independent increments are statistically self-affine and distributed with a stable probability law characterized by the Levy index alpha, 0 < alpha < 2. The divergence of statistical moments of the order q > alpha leads to an important role of the finite sample effects.. The objective pf this paper is to study the influence of these effects on the self-affine properties of the oLm, namely, on the '1/alpha laws', i.e., time-dependence of the gth order structure function and of the range. Analytical estimates and simulations of the Anile sample effects clearly demonstrates three phenomena: spurious multi-affinity of the Levy motion, strong dependence of the structure function on the sample size at q > alpha, and pseudo-Gaussian behavior of the second-order structure function and of the normalized range. We discuss these phenomena in detail and propose the modified Hurst method for empirical rescaled range analysis. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2379 / 2390
页数:12
相关论文
共 42 条
  • [31] SCHMITT F, 1999, APPL STOCH MODEL BUS, P15
  • [32] LEVY DYNAMICS OF ENHANCED DIFFUSION - APPLICATION TO TURBULENCE
    SHLESINGER, MF
    WEST, BJ
    KLAFTER, J
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (11) : 1100 - 1103
  • [33] STRANGE KINETICS
    SHLESINGER, MF
    ZASLAVSKY, GM
    KLAFTER, J
    [J]. NATURE, 1993, 363 (6424) : 31 - 37
  • [34] Skorokhod Anatolii Vladimirovich., 1991, RANDOM PROCESSES IND
  • [35] Taqqu M., 1994, STABLE NONGAUSSIAN R
  • [36] Superposition of chaotic processes with convergence to Levy's stable law
    Umeno, K
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 2644 - 2647
  • [37] Voss R., 1985, Fundamental algorithms for computer graphics, P805
  • [38] West B. J., 1994, Physics Reports, V246, P1, DOI 10.1016/0370-1573(94)00055-7
  • [39] Wiener Norbert, 1923, J. Math. Phys, V2, P131, DOI DOI 10.1002/SAPM192321131
  • [40] FRACTIONAL KINETIC-EQUATION FOR HAMILTONIAN CHAOS
    ZASLAVSKY, GM
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (1-3) : 110 - 122