Ultrasmall Near-Infrared Non-cadmium Quantum Dots for in vivo Tumor Imaging

被引:160
作者
Gao, Jinhao [1 ,2 ]
Chen, Kai [1 ,2 ]
Xie, Renguo [3 ]
Xie, Jin [1 ,2 ]
Lee, Seulki [1 ,2 ]
Cheng, Zhen [1 ,2 ]
Peng, Xiaogang [3 ]
Chen, Xiaoyuan [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Mol Imaging Program Stanford, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Bio X Program, Stanford, CA 94305 USA
[3] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
关键词
fluorescence imaging; passive targeting; quantum dots; tumor imaging; LIVING SUBJECTS; SERUM-ALBUMIN; NANOPARTICLES; CANCER; VASCULATURE; BIODISTRIBUTION; THERMODYNAMICS; MEDICINE; ANTIBODY; CELLS;
D O I
10.1002/smll.200901672
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high tumor uptake of ultrasmall near-infrared quantum dots (QDs) attributed to the enhanced permeability and retention effect is reported. InAs/InP/ZnSe QDs coated by mercaptopropionic acid (MPA) exhibit an emission wavelength of about 800 nm (QD800-MPA) with very small hydrodynamic diameter (<10 nm). Using 22B and LS174T tumor xenograft models, in vivo and ex vivo imaging studies show that QD800-MPA is highly accumulated in the tumor area, which is very promising for tumor detection in living mice. The ex vivo elemental analysis (Indium) using inductively coupled plasma (ICP) spectrometry confirm the tumor uptake of QDs. The ICP data are consistent with the in vivo and ex vivo fluorescence imaging. Human serum albumin (HSA)-coated QD800-MPA nanoparticles (QD800-MPA-HSA) show reduced localization in mononuclear phagocytic system-related organs over QD800-MPA plausibly due to the low uptake of QD800-MPA-HSA in macrophage cells. QD800-MPA-HSA may have great potential for in vivo fluorescence imaging.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 34 条
[21]   Quantum dots for live cells, in vivo imaging, and diagnostics [J].
Michalet, X ;
Pinaud, FF ;
Bentolila, LA ;
Tsay, JM ;
Doose, S ;
Li, JJ ;
Sundaresan, G ;
Wu, AM ;
Gambhir, SS ;
Weiss, S .
SCIENCE, 2005, 307 (5709) :538-544
[22]  
Nel AE, 2009, NAT MATER, V8, P543, DOI [10.1038/NMAT2442, 10.1038/nmat2442]
[23]  
Park JH, 2009, NAT MATER, V8, P331, DOI [10.1038/NMAT2398, 10.1038/nmat2398]
[24]   Nanotechnology: convergence with modern biology and medicine [J].
Roco, MC .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (03) :337-346
[25]   THERMODYNAMICS OF PROTEIN ASSOCIATION REACTIONS - FORCES CONTRIBUTING TO STABILITY [J].
ROSS, PD ;
SUBRAMANIAN, S .
BIOCHEMISTRY, 1981, 20 (11) :3096-3102
[26]   Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice [J].
Schipper, Meike L. ;
Iyer, Gopal ;
Koh, Ai Leen ;
Cheng, Zhen ;
Ebenstein, Yuval ;
Aharoni, Assaf ;
Keren, Shay ;
Bentolila, Laurent A. ;
Li, Jianquing ;
Rao, Jianghong ;
Chen, Xiaoyuan ;
Banin, Uri ;
Wu, Anna M. ;
Sinclair, Robert ;
Weiss, Shimon ;
Gambhir, Sanjiv S. .
SMALL, 2009, 5 (01) :126-134
[27]   Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo [J].
Stroh, M ;
Zimmer, JP ;
Duda, DG ;
Levchenko, TS ;
Cohen, KS ;
Brown, EB ;
Scadden, DT ;
Torchilin, VP ;
Bawendi, MG ;
Fukumura, D ;
Jain, RK .
NATURE MEDICINE, 2005, 11 (06) :678-682
[28]   In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice [J].
Tada, Hiroshi ;
Higuchi, Hideo ;
Wanatabe, Tomonobu M. ;
Ohuchi, Noriaki .
CANCER RESEARCH, 2007, 67 (03) :1138-1144
[29]   The 'right' size in nanobiotechnology [J].
Whitesides, GM .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1161-1165
[30]   Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots [J].
Xiao, Qi ;
Huang, Shan ;
Qi, Zu-De ;
Zhou, Bo ;
He, Zhi-Ke ;
Liu, Yi .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2008, 1784 (7-8) :1020-1027