Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex

被引:197
作者
Lee, Jeong-Heon
Tate, Courtney M.
You, Jin-Sam
Skalnik, David G.
机构
[1] Indiana Univ, Sch Med, Wells Ctr Pediat Res, Sect Pediat Hematol Oncol,Dept Pediat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[3] Indiana Ctr Appl Prot Sci, Indianapolis, IN 46202 USA
关键词
D O I
10.1074/jbc.M609809200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We previously identified a mammalian Set1A complex analogous to the yeast Set1/COMPASS histone H3-Lys4 methyltransferase complex ( Lee, J.- H., and Skalnik, D. G. (2005) J. Biol. Chem. 280, 41725-41731). Data base analysis indicates that human Set1A protein shares 39% identity with an uncharacterized SET domain protein, KIAA1076, hereafter denoted Set1B. Immunoprecipitation and mass spectrometry reveal that Set1B associates with a similar to 450 kDa complex that contains all five noncatalytic components of the Set1A complex, including CFP1, Rbbp5, Ash2, Wdr5, and Wdr82. These data reveal two human protein complexes that differ only in the identity of the catalytic histone methyltransferase. In vitro assays demonstrate that the Set1B complex is a histone methyltransferase that produces trimethylated histone H3 at Lys(4). Both Set1A and Set1B are widely expressed. Inducible expression of the carboxyl terminus of either Set1A or Set1B decreases steady-state levels of both endogenous Set1A and Set1B protein, but does not alter the expression of the non-catalytic components of the Set1 complexes. A 123-amino acid fragment upstream of the Set1A SET domain is necessary for interaction with CFP1, Ash2, Rbbp5, and Wdr5. This protein domain is also required to mediate feedback inhibition of Set1A and Set1B expression, which is a consequence of reduced Set1A and Set1B stability when not associated with the methyltransferase complex. Confocal microscopy reveals that Set1A and Set1B each localize to a largely non-overlapping set of euchromatic nuclear speckles, suggesting that Set1A and Set1B each bind to a unique set of target genes and thus make non-redundant contributions to the epigenetic control of chromatin structure and gene expression.
引用
收藏
页码:13419 / 13428
页数:10
相关论文
共 34 条
[21]   A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3 [J].
Nagy, PL ;
Griesenbeck, J ;
Kornberg, RD ;
Cleary, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :90-94
[22]   Targeted recruitment of set1 histone methylase by elongating pol II provides a localized mark and memory of recent transcriptional activity [J].
Ng, HH ;
Robert, F ;
Young, RA ;
Struhl, K .
MOLECULAR CELL, 2003, 11 (03) :709-719
[23]   Histones and histone modifications [J].
Peterson, CL ;
Laniel, MA .
CURRENT BIOLOGY, 2004, 14 (14) :R546-R551
[24]   Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia [J].
Prasad, R ;
Yano, T ;
Sorio, C ;
Nakamura, T ;
Rallapalli, R ;
Gu, Y ;
Leshkowitz, D ;
Croce, CM ;
Canaani, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12160-12164
[25]   The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4 [J].
Roguev, A ;
Schaft, D ;
Shevchenko, A ;
Pijnappel, WWMP ;
Wilm, M ;
Aasland, R ;
Stewart, AF .
EMBO JOURNAL, 2001, 20 (24) :7137-7148
[26]   Histone acetyltransferases [J].
Roth, SY ;
Denu, JM ;
Allis, CD .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :81-120
[27]   Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression [J].
Shilatifard, Ali .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :243-269
[28]   Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena [J].
Strahl, BD ;
Ohba, R ;
Cook, RG ;
Allis, CD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14967-14972
[29]   INVOLVEMENT OF A HOMOLOG OF DROSOPHILA-TRITHORAX BY 11Q23 CHROMOSOMAL TRANSLOCATIONS IN ACUTE LEUKEMIAS [J].
TKACHUK, DC ;
KOHLER, S ;
CLEARY, ML .
CELL, 1992, 71 (04) :691-700
[30]  
Voo KS, 2000, MOL CELL BIOL, V20, P2108