Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review

被引:5191
作者
Cheng, Xin-Bing [1 ]
Zhang, Rui [1 ]
Zhao, Chen-Zi [1 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
关键词
SOLID-ELECTROLYTE INTERPHASE; HIGH-ENERGY-DENSITY; LI-ION BATTERIES; ATOMIC-FORCE MICROSCOPY; ENHANCED CYCLING PERFORMANCE; SUPPRESSING DENDRITE GROWTH; REDUCED GRAPHENE OXIDE; IN-SALT ELECTROLYTE; HIGH-AREAL-CAPACITY; POLYMER ELECTROLYTE;
D O I
10.1021/acs.chemrev.7b00115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applications is included. A general conclusion and a perspective on the current limitations and recommended future research directions of lithium metal batteries are presented. The review concludes with an attempt at summarizing the theoretical and experimental achievements in lithium metal anodes and endeavors to realize the practical applications of lithium metal batteries.
引用
收藏
页码:10403 / 10473
页数:71
相关论文
共 549 条
[1]   Influence of tartaric acid on zinc electrodeposition from sulphate bath [J].
Aaboubi, O. ;
Douglade, J. ;
Abenaqui, X. ;
Boumedmed, R. ;
VonHoff, J. .
ELECTROCHIMICA ACTA, 2011, 56 (23) :7885-7889
[2]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[3]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[4]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[5]   Low-Cost, Dendrite-Blocking Polymer-Sb2O3 Separators for Lithium and Sodium Batteries [J].
Ansari, Younes ;
Guo, Bingkun ;
Cho, Joon Hee ;
Park, Kyusung ;
Song, Jie ;
Ellison, Christopher J. ;
Goodenough, John B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) :A1655-A1661
[6]   CONTROLLED CURRENT DEPOSITION OF ZINC FROM ALKALINE SOLUTION [J].
AROUETE, S ;
BLURTON, KF ;
OSWIN, HG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (02) :166-&
[7]   Annealing kinetics of electrodeposited lithium dendrites [J].
Aryanfar, Asghar ;
Cheng, Tao ;
Colussi, Agustin J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Hoffmann, Michael R. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (13)
[8]   Thermal relaxation of lithium dendrites [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :8000-8005
[9]   Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) :24965-24970
[10]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726