Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains

被引:42
作者
Dauxois, T [1 ]
Ruffo, S [1 ]
Torcini, A [1 ]
机构
[1] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
关键词
D O I
10.1103/PhysRevE.56.R6229
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the framework of the Fermi-Pasta-Ulam (FPU) model, we show a simple method to give an accurate analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the computation of the mean value of the modulational instability growth rates associated to unstable modes. Moreover. we show that the strong stochasticity threshold found in the beta-FPU system is closely related to a transition in tangent space, the Lyapunov eigenvector being more localized in space at high energy.
引用
收藏
页码:R6229 / R6232
页数:4
相关论文
共 28 条
[11]   LIAPUNOV SPECTRA FOR INFINITE CHAINS OF NONLINEAR OSCILLATORS [J].
ECKMANN, JP ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) :853-878
[12]   ERGODIC PROPERTIES OF HIGH-DIMENSIONAL SYMPLECTIC MAPS [J].
FALCIONI, M ;
MARCONI, UMB ;
VULPIANI, A .
PHYSICAL REVIEW A, 1991, 44 (04) :2263-2270
[13]   Tangent bifurcation of band edge plane waves, dynamical symmetry breaking and vibrational localization [J].
Flach, S .
PHYSICA D, 1996, 91 (03) :223-243
[14]   THE FERMI-PASTA-ULAM PROBLEM - PARADOX TURNS DISCOVERY [J].
FORD, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 213 (05) :271-310
[15]   ON THE PROBLEM OF ENERGY EQUIPARTITION FOR LARGE SYSTEMS OF THE FERMI-PASTA-ULAM TYPE - ANALYTICAL AND NUMERICAL ESTIMATES [J].
GALGANI, L ;
GIORGILLI, A ;
MARTINOLI, A ;
VANZINI, S .
PHYSICA D, 1992, 59 (04) :334-348
[16]  
Izrailev F M, 1966, SOV PHYS DOKL, V11, P30
[17]   SIMPLE-MODELS OF QUANTUM CHAOS - SPECTRUM AND EIGENFUNCTIONS [J].
IZRAILEV, FM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (5-6) :299-392
[18]   LYAPUNOV ANALYSIS AND INFORMATION-FLOW IN COUPLED MAP LATTICES [J].
KANEKO, K .
PHYSICA D, 1986, 23 (1-3) :436-447
[19]   VANISHING STABILITY THRESHOLDS IN THE THERMODYNAMIC LIMIT OF NONINTEGRABLE CONSERVATIVE-SYSTEMS [J].
KANTZ, H .
PHYSICA D, 1989, 39 (2-3) :322-335
[20]   LOCALIZATION - THEORY AND EXPERIMENT [J].
KRAMER, B ;
MACKINNON, A .
REPORTS ON PROGRESS IN PHYSICS, 1993, 56 (12) :1469-1564