Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polyrnerases

被引:123
作者
Castro, Christian
Smidansky, Eric
Maksimchuk, Kenneth R.
Arnold, Jamie J.
Korneeva, Victoria S.
Gotte, Matthias
Konigsberg, William
Cameron, Craig E.
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[2] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3A 2B4, Canada
[3] Yale Univ, Dept Biochem & Mol Biophys, New Haven, CT 06520 USA
关键词
general-acid-base catalysis; phosphoryl transfer; two-metal-ion mechanism;
D O I
10.1073/pnas.0608952104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rate-limiting step for nucleotide incorporation in the presteady state for most nucleic acid polymerases is thought to be a conformational change. As a result, very little information is available on the role of active-site residues in the chemistry of nucleotidyl transfer. For the poliovirus RNA-dependent RNA polymerase (3D(pol)), chemistry is partially (Mg2+) or completely (Mn2+) rate limiting. Here we show that nucleotidyl transfer depends on two ionizable groups with pK(a) values of 7.0 or 8.2 and 10.5, depending upon the divalent cation used in the reaction. A solvent deuterium isotope effect of three to seven was observed on the rate constant for nucleotide incorporation in the pre-steady state; none was observed in the steady state. Proton-inventory experiments were consistent with two protons being transferred during the rate-limiting transition state of the reaction, suggesting that both deprotonation of the 3'-hydroxyl nucleophile and protonation of the pyrophosphate leaving group occur in the transition state for phosphodiester bond formation. Importantly, two proton transfers occur in the transition state for nucleoticlyl-transfer reactions catalyzed by RB69 DNA-dependent DNA polymerase, T7 DNA-dependent RNA polymerase and HIV reverse transcriptase. Interpretation of these data in the context of known polymerase structures suggests the existence of a general base for deprotonation of the 3'-OH nucleophile, although use of a water molecule cannot be ruled out conclusively, and a general acid for protonation of the pyrophosphate leaving group in all nucleic acid polymerases. These data imply an associative-like transition-state structure.
引用
收藏
页码:4267 / 4272
页数:6
相关论文
共 47 条
[1]   Insight into the catalytic mechanism of DNA polymerase β:: Structures of intermediate complexes [J].
Arndt, JW ;
Gong, WM ;
Zhong, XJ ;
Showalter, AK ;
Liu, J ;
Dunlap, CA ;
Lin, Z ;
Paxson, C ;
Tsai, MD ;
Chan, MK .
BIOCHEMISTRY, 2001, 40 (18) :5368-5375
[2]  
Arnold JJ, 2004, BIOCHEMISTRY-US, V43, P5126, DOI 10.1021/bi035212y
[3]   Poliovirus RNA-dependent RNA polymerase (3Dpol):: Pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+ [J].
Arnold, JJ ;
Gohara, DW ;
Cameron, CE .
BIOCHEMISTRY, 2004, 43 (18) :5138-5148
[4]   Poliovirus RNA-dependent RNA polymerase (3Dpol) -: Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub) [J].
Arnold, JJ ;
Cameron, CE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (08) :5329-5336
[5]   Magnesium-induced assembly of a complete DNA polymerase catalytic complex [J].
Batra, VK ;
Beard, WA ;
Shock, DD ;
Krahn, JM ;
Pedersen, LC ;
Wilson, SH .
STRUCTURE, 2006, 14 (04) :757-766
[6]   Inhibition of reverse transcription in vivo by elevated manganese ion concentration [J].
Bolton, EC ;
Mildvan, AS ;
Boeke, JD .
MOLECULAR CELL, 2002, 9 (04) :879-889
[7]   Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes [J].
Brautigam, CA ;
Steitz, TA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :54-63
[8]  
Cleland W W, 1977, Adv Enzymol Relat Areas Mol Biol, V45, P273
[9]  
Dawson R.M.C., 1989, DATA BIOCH RES
[10]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258