Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes

被引:449
作者
Hazkani-Covo, Einat [1 ]
Zeller, Raymond M. [1 ,2 ]
Martin, William [3 ]
机构
[1] Natl Evolutionary Synth Ctr, Durham, NC USA
[2] Duke Univ, Math Undergrad Program, Durham, NC USA
[3] Univ Dusseldorf, Inst Bot 3, Dusseldorf, Germany
来源
PLOS GENETICS | 2010年 / 6卷 / 02期
基金
欧洲研究理事会;
关键词
HUMAN GENETIC-DISEASE; DOUBLE-STRAND BREAKS; PROMISCUOUS DNA; INSERTIONS; PSEUDOGENES; EVOLUTION; CHLOROPLAST; MTDNA; YEAST; ESCAPE;
D O I
10.1371/journal.pgen.1000834
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutionary time. In the laboratory and in nature, numts enter the nuclear DNA via non-homolgous end joining (NHEJ) at double-strand breaks (DSBs). The frequency of numt insertions among 85 sequenced eukaryotic genomes reveal that numt content is strongly correlated with genome size, suggesting that the numt insertion rate might be limited by DSB frequency. Polymorphic numts in humans link maternally inherited mitochondrial genotypes to nuclear DNA haplotypes during the past, offering new opportunities to associate nuclear markers with mitochondrial markers back in time.
引用
收藏
页数:11
相关论文
共 94 条
[1]   Mitophagy - The life-or-death dichotomy includes yeast [J].
Abeliovich, Hagai .
AUTOPHAGY, 2007, 3 (03) :275-277
[2]   The connection between transcription and genomic instability [J].
Aguilera, A .
EMBO JOURNAL, 2002, 21 (03) :195-201
[3]   Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC [J].
Ahmed, ZM ;
Smith, TN ;
Riazuddin, S ;
Makishima, T ;
Ghosh, M ;
Bokhari, S ;
Menon, PSN ;
Deshmukh, D ;
Griffith, AJ ;
Riazuddin, S ;
Friedman, TB ;
Wilcox, ER .
HUMAN GENETICS, 2002, 110 (06) :527-531
[4]   CONTROL OF GENE-EXPRESSION BY REDOX POTENTIAL AND THE REQUIREMENT FOR CHLOROPLAST AND MITOCHONDRIAL GENOMES [J].
ALLEN, JF .
JOURNAL OF THEORETICAL BIOLOGY, 1993, 165 (04) :609-631
[5]   The function of genomes in bioenergetic organelles [J].
Allen, JF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 358 (1429) :19-37
[6]   Mitochondrial introgressions into the nuclear genome of the domestic cat [J].
Antunes, Agostinho ;
Pontius, Joan ;
Ramos, Maria Joao ;
O'Brien, Stephen J. ;
Johnson, Warren E. .
JOURNAL OF HEREDITY, 2007, 98 (05) :414-420
[7]   Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome [J].
Behura, Susanta K. .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (07) :1492-1505
[8]   Mitochondrial pseudogenes: evolution's misplaced witnesses [J].
Bensasson, D ;
Zhang, DX ;
Hartl, DL ;
Hewitt, GM .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (06) :314-321
[9]   Rates of DNA duplication and mitochondrial DNA insertion in the human genome [J].
Bensasson, D ;
Feldman, MW ;
Petrov, DA .
JOURNAL OF MOLECULAR EVOLUTION, 2003, 57 (03) :343-354
[10]   Genomic gigantism: DNA loss is slow in mountain grasshoppers [J].
Bensasson, D ;
Petrov, DA ;
Zhang, DX ;
Hartl, DL ;
Hewitt, GM .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (02) :246-253