Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters

被引:146
作者
Dai, F. [1 ,2 ]
Chen, R. [1 ,2 ,3 ]
Iqbal, M. J. [1 ,2 ]
Xia, K. [1 ,2 ]
机构
[1] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada
[2] Univ Toronto, Lassonde Inst, Toronto, ON M5S 1A4, Canada
[3] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Dynamic fracture; CCNBD; Dynamic initiation toughness; Dynamic propagation toughness; Stable-unstable fracture transition; HOPKINSON PRESSURE BAR; MODE-I; EXPERIMENTAL CALIBRATION; BEND TECHNIQUE; LOADING RATE; TOUGHNESS; SPECIMENS; ENERGY;
D O I
10.1016/j.ijrmms.2010.04.002
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The cracked chevron notch Brazilian disc (CCNBD) method is widely used in characterizing rock fracture toughness. We explore here the possibility of extending the CCNBD method to dynamic rock fracture testing. In dynamic rock fractures, relevant fracture parameters are the initiation fracture toughness, the fracture energy, the fracture propagation toughness, and the fracture velocity. The dynamic load is applied with a split Hopkins on pressure bar (SHPB) apparatus. A strain gauge is mounted on the sample surface near the notch tip to detect the fracture-induced strain release, and a laser gap gauge (LGG) is used to monitor the crack surface opening distance (CSOD) during the test. With dynamic force balance achieved in the tests, the stable-unstable transition of the crack propagation crack is observed and the initiation fracture toughness is obtained from the peak load. The dynamic fracture initiation toughness values obtained for the chosen rock (Laurentian granite) using this method are consistent with those measured using other methods. The dynamic fracture initiation toughness is in the range 2.5-4.6 MPa m(1/2) and the propagation fracture toughness is in the range 7.1-10.6 MPa m(1/2), which is consistently larger than the initiation toughness. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:606 / 613
页数:8
相关论文
共 29 条
[21]   Fracture toughness anisotropy in granitic rocks [J].
Nasseri, M. H. B. ;
Mohanty, B. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2008, 45 (02) :167-193
[22]   Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets [J].
Owen, DM ;
Zhuang, S ;
Rosakis, AJ ;
Ravichandran, G .
INTERNATIONAL JOURNAL OF FRACTURE, 1998, 90 (1-2) :153-174
[23]   Energy for specimen deformation in a split Hopkinson pressure bar experiment [J].
Song, B. ;
Chen, W. .
EXPERIMENTAL MECHANICS, 2006, 46 (03) :407-410
[24]   A NEW METHOD FOR MEASURING DYNAMIC FRACTURE-TOUGHNESS OF ROCK [J].
TANG, CN ;
XU, XH .
ENGINEERING FRACTURE MECHANICS, 1990, 35 (4-5) :783-&
[25]  
Weerasooriya T, 2006, J AM CERAM SOC, V89, P990, DOI [10.1111/j.1551-2916.2005.00896.x, 10.1111/j.1551-2916.2005.008963x]
[26]   Effects of microstructures on dynamic compression of Barre granite [J].
Xia, K. ;
Nasseri, M. H. B. ;
Mohanty, B. ;
Lu, F. ;
Chen, R. ;
Luo, S. N. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2008, 45 (06) :879-887
[27]   Observing ideal "self-similar" crack growth in experiments [J].
Xia, Kaiwen ;
Chalivendra, Vijaya B. ;
Rosakis, Ares J. .
ENGINEERING FRACTURE MECHANICS, 2006, 73 (18) :2748-2755
[28]   Effects of loading rate on rock fracture [J].
Zhang, ZX ;
Kou, SQ ;
Yu, J ;
Yu, Y ;
Jiang, LG ;
Lindqvist, PA .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1999, 36 (05) :597-611
[29]   Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J].
Zhang, ZX ;
Kou, SQ ;
Jiang, LG ;
Lindqvist, PA .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2000, 37 (05) :745-762