Two complementary descriptions of intermittency

被引:14
作者
Balkovsky, E [1 ]
Falkovich, G
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Inst Adv Study, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.R1231
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe two complementary formalisms designed for the description of the probability density function (PDF) of the gradients of turbulent fields. The first approach, we call it adiabatic, describes the PDF at the values much less than dispersion. The second, instanton, approach gives the tails of the PDF at the values of the gradient much larger than dispersion. Together, both approaches give a satisfactory description of gradient PDFs, as illustrated here by an example of a passive scalar advected by a one-dimensional compressible random how. [S1063-651X(98)50602-2].
引用
收藏
页码:R1231 / R1234
页数:4
相关论文
共 12 条
[1]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[2]   Inverse cascade and intermittency of passive scalar in one-dimensional smooth flow [J].
Chertkov, M ;
Kolokolov, I ;
Vergassola, M .
PHYSICAL REVIEW E, 1997, 56 (05) :5483-5499
[3]   Instanton for random advection [J].
Chertkov, M .
PHYSICAL REVIEW E, 1997, 55 (03) :2722-2735
[4]   Single-point velocity distribution in turbulence [J].
Falkovich, G ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4159-4161
[5]   Instantons and intermittency [J].
Falkovich, G ;
Kolokolov, I ;
Lebedev, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4896-4907
[6]   Instantons in the Burgers equation [J].
Gurarie, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4908-4914
[7]   TURBULENT MIXING OF A PASSIVE SCALAR [J].
HOLZER, M ;
SIGGIA, ED .
PHYSICS OF FLUIDS, 1994, 6 (05) :1820-1837
[8]  
Kraichnan R. H., 1974, Journal of Fluid Mechanics, V64, P737, DOI 10.1017/S0022112074001881
[9]   A NUMERICAL STUDY OF THE MIXING OF A PASSIVE SCALAR IN 3 DIMENSIONS IN THE PRESENCE OF A MEAN GRADIENT [J].
PUMIR, A .
PHYSICS OF FLUIDS, 1994, 6 (06) :2118-2132
[10]   LAGRANGIAN PATH-INTEGRALS AND FLUCTUATIONS IN RANDOM FLOW [J].
SHRAIMAN, BI ;
SIGGIA, ED .
PHYSICAL REVIEW E, 1994, 49 (04) :2912-2927