Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol

被引:121
作者
Farina, Salvatore C. [1 ]
Adams, Peter J. [1 ]
Pandis, Spyros N. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[2] Fdn Res & Technol, Inst Chem Engn & High Temp Chem Proc, Patras, Greece
关键词
GENERAL-CIRCULATION MODEL; SOA FORMATION; PARTICULATE MATTER; CHEMISTRY; TRANSPORT; SULFATE; SIMULATION; OXIDATION; POLLUTION; MASS;
D O I
10.1029/2009JD013046
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The volatility basis set, a computationally efficient framework for the description of organic aerosol partitioning and chemical aging, is implemented in the Goddard Institute for Space Studies General Circulation Model II' for a coupled global circulation and chemical transport model to simulate secondary organic aerosol (SOA) formation. The latest smog chamber information about the yields of anthropogenic and biogenic precursors is incorporated in the model. SOA formation from monoterpenes, sesquiterpenes, isoprene, and anthropogenic precursors is estimated as 17.2, 3.9, 6.5, and 1.6 Tg yr (1), respectively. Reducing water solubility of secondary organic gas from 105 to 103 mol L (1) atm (1) (1 atm = 1.01325 x 10(5) N m (2)) leads to a 90% increase in SOA production and an increase of over 340% in total atmospheric burden, from 0.54 to 2.4 Tg. Increasing the temperature sensitivity of SOA leads to a 30% increase in production, to 38.2 Tg yr(-1). Since the additional SOA is formed at high altitude, where deposition time scales are longer, the average lifetime is doubled from 6.8 to 14.3 days, resulting in a near tripling of atmospheric burden to 1.5 Tg. Chemical aging of anthropogenic SOA by gas-phase reaction of the SOA components with the hydroxyl radical adds an additional 2.7-9.3 Tg yr(-1) of anthropogenic SOA to the above production rates and nearly doubles annual average total SOA burdens. The possibility of such high anthropogenic SOA production rates challenges the assumption that anthropogenic volatile organic compounds are not important SOA precursors on a global scale. Model predictions with and without SOA aging are compared with data from two surface observation networks: the Interagency Monitoring of Protected Visual Environments for the United States and the European Monitoring and Evaluation Programme.
引用
收藏
页数:17
相关论文
共 92 条
  • [21] The formation, properties and impact of secondary organic aerosol: current and emerging issues
    Hallquist, M.
    Wenger, J. C.
    Baltensperger, U.
    Rudich, Y.
    Simpson, D.
    Claeys, M.
    Dommen, J.
    Donahue, N. M.
    George, C.
    Goldstein, A. H.
    Hamilton, J. F.
    Herrmann, H.
    Hoffmann, T.
    Iinuma, Y.
    Jang, M.
    Jenkin, M. E.
    Jimenez, J. L.
    Kiendler-Scharr, A.
    Maenhaut, W.
    McFiggans, G.
    Mentel, Th. F.
    Monod, A.
    Prevot, A. S. H.
    Seinfeld, J. H.
    Surratt, J. D.
    Szmigielski, R.
    Wildt, J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 5155 - 5236
  • [22] Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change
    Heald, C. L.
    Henze, D. K.
    Horowitz, L. W.
    Feddema, J.
    Lamarque, J. -F.
    Guenther, A.
    Hess, P. G.
    Vitt, F.
    Seinfeld, J. H.
    Goldstein, A. H.
    Fung, I.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D5)
  • [23] A large organic aerosol source in the free troposphere missing from current models
    Heald, CL
    Jacob, DJ
    Park, RJ
    Russell, LM
    Huebert, BJ
    Seinfeld, JH
    Liao, H
    Weber, RJ
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (18) : 1 - 4
  • [24] Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways
    Henze, D. K.
    Seinfeld, J. H.
    Ng, N. L.
    Kroll, J. H.
    Fu, T. -M.
    Jacob, D. J.
    Heald, C. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (09) : 2405 - 2420
  • [25] Global secondary organic aerosol from isoprene oxidation
    Henze, Daven K.
    Seinfeld, John H.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (09)
  • [26] High formation of secondary organic aerosol from the photo-oxidation of toluene
    Hildebrandt, L.
    Donahue, N. M.
    Pandis, S. N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) : 2973 - 2986
  • [27] Formation of organic aerosols from the oxidation of biogenic hydrocarbons
    Hoffmann, T
    Odum, JR
    Bowman, F
    Collins, D
    Klockow, D
    Flagan, RC
    Seinfeld, JH
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 26 (02) : 189 - 222
  • [28] Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2
    Hoyle, C. R.
    Berntsen, T.
    Myhre, G.
    Isaksen, I. S. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (21) : 5675 - 5694
  • [29] Anthropogenic influence on SOA and the resulting radiative forcing
    Hoyle, C. R.
    Myhre, G.
    Berntsen, T. K.
    Isaksen, I. S. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (08) : 2715 - 2728
  • [30] JACOBSON MZ, 1994, ATMOS ENVIRON, V28, P273