Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay

被引:529
作者
Chang, MY
Juang, RS [1 ]
机构
[1] Natl United Univ, Dept Chem Engn, Miaoli 360, Taiwan
[2] Yuan Ze Univ, Dept Chem Engn, Chungli 320, Taiwan
关键词
chitosan; activated clay; composite bead; adsorption; tannic acid; humic acid; dyes;
D O I
10.1016/j.jcis.2004.05.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chitosan is a well-known excellent adsorbent for a number of organics and metal ions, but its mechanical properties and specific gravity should be enhanced for practical operation. In this study, activated clay was added in chitosan slurry to prepare composite beads. The adsorption isotherms and kinetics of two organic acids (tannic acid, humic acid) and two dyes (methylene blue, reactive dye RR222) using composite beads, activated clay, and chitosan beads were compared. With composite beads as an adsorbent, all the isotherms were better fitted by the Freundlich equation. The adsorption capacities with composite beads were generally comparable to those with chitosan beads but much larger than those with activated clay. The pseudo-first-order and pseudo-second-order equations were then screened to describe the adsorption processes. It was shown that the adsorption of larger molecules such as tannic acid (MW, 1700 g mol(-1)), humic acid, and RR222 from water onto composite beads was better described by the pseudo-first-order kinetic model. The rate parameters of the intraparticle diffusion model for adsorption onto such adsorbents were also evaluated and compared to identify the adsorption mechanisms. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 25
页数:8
相关论文
共 26 条
[1]  
DAVIS ML, 1998, INTRO ENV ENG, P219
[2]   Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays [J].
Dentel, SK ;
Jamrah, AI ;
Sparks, DL .
WATER RESEARCH, 1998, 32 (12) :3689-3697
[3]   Adsorption of humic acid by powdered activated carbon in saline water conditions [J].
Duan, JM ;
Wilson, F ;
Graham, N ;
Tay, JH .
DESALINATION, 2003, 151 (01) :53-66
[4]   Adsorption of methylene blue on kaolinite [J].
Ghosh, D ;
Bhattacharyya, KG .
APPLIED CLAY SCIENCE, 2002, 20 (06) :295-300
[5]   ENHANCEMENT OF METAL-ION SORPTION PERFORMANCES OF CHITOSAN - EFFECT OF THE STRUCTURE ON THE DIFFUSION PROPERTIES [J].
GUIBAL, E ;
JANSSONCHARRIER, M ;
SAUCEDO, I ;
LECLOIREC, P .
LANGMUIR, 1995, 11 (02) :591-598
[6]   New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids [J].
Han, SJ ;
Kim, S ;
Lim, H ;
Choi, WY ;
Park, H ;
Yoon, J ;
Hyeon, T .
MICROPOROUS AND MESOPOROUS MATERIALS, 2003, 58 (02) :131-135
[7]   Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash [J].
Ho, YS ;
McKay, G .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 1999, 34 (05) :1179-1204
[8]   Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions [J].
Hsieh, CT ;
Teng, HS .
CARBON, 2000, 38 (06) :863-869
[9]  
JEKEL MR, 1991, J WATER SUPPLY RES T, V40, P18
[10]   Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels [J].
Juang, RS ;
Wu, FC ;
Tseng, RL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2000, 227 (02) :437-444