Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries

被引:87
作者
Lai, C. [1 ]
Li, G. R. [1 ]
Dou, Y. Y. [1 ]
Gao, X. P. [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300071, Peoples R China
关键词
Polyaniline; TiO2; Mesoporous; Nanocomposite; Lithium-ion batteries; ELECTROCHEMICAL ENERGY-STORAGE; ANATASE; PERFORMANCE; NANOTUBES; COMPOSITE; TITANATE; NANOPARTICLES; REACTIVITY; INTERFACE; INSERTION;
D O I
10.1016/j.electacta.2010.03.010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A functional composite as anode materials for lithium-ion batteries, which contains highly dispersed TiO2 nanocrystals in polyaniline matrix and well-defined mesopores, is fabricated by employing a novel one-step approach. The as-prepared mesoporous polyaniline/anatase TiO2 nanocomposite has a high specific surface area of 224 m(2) g(-1) and a predominant pore size of 3.6 nm. The electrochemical performance of the as-prepared composite as anode material is investigated by cyclic voltammograms and galvanostatic method The results demonstrate that the polyaniline/anatase nanocomposite provides larger initial discharge capacity of 233 mAh g(-1) and good cycle stability at the high current density of 2000 mA g(-1). After 70th cycles, the discharge capacity is maintained at 140 mAh g(-1). The excellent electrochemical performance of the polyaniline/TiO2 nanocomposite is mainly attributed to its special structure. Furthermore. it is accessible to extend the novel strategy to other polymer/TiO2 composites, and the mesoporous polypyrrole/anatase TiO2 is also successfully fabricated (C) 2010 Elsevier Ltd. All rights reserved
引用
收藏
页码:4567 / 4572
页数:6
相关论文
共 39 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Size effects and nanostructured materials for energy applications [J].
Balaya, Palani .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (06) :645-654
[3]   Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors [J].
Bian, Chaoqing ;
Yu, Aishui ;
Wu, Haoqing .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) :266-269
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[6]  
Fukuda K, 1997, J POWER SOURCES, V69, P165, DOI 10.1016/S0378-7753(97)02568-8
[7]   Organic-inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems [J].
Ganesan, Raman ;
Gedanken, Aharon .
NANOTECHNOLOGY, 2008, 19 (43)
[8]   Conducting polymer nanocomposites: A brief overview [J].
Gangopadhyay, R ;
De, A .
CHEMISTRY OF MATERIALS, 2000, 12 (03) :608-622
[9]   Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material [J].
Gao, XP ;
Zhu, HY ;
Pan, GL ;
Ye, SH ;
Lan, Y ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (09) :2868-2872
[10]   Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes [J].
Gao, XP ;
Lan, Y ;
Zhu, HY ;
Liu, JW ;
Ge, YP ;
Wu, F ;
Song, DY .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (01) :A26-A29