Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population

被引:51
作者
Derrick, WR [1 ]
Van Den Driessche, P
机构
[1] Univ Montana, Dept Math, Missoula, MT 59802 USA
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2003年 / 3卷 / 02期
关键词
epidemiological model; nonlinear incidence function; saddle-node bifurcation; Hopf bifurcation; homoclinic loop bifurcation;
D O I
10.3934/dcdsb.2003.3.299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Periodic oscillations are proved for an SIRS disease transmission model in which the size of the population varies and the incidence rate is a nonlinear function. For this particular incidence function, analytical techniques are used to show that, for some parameter values, periodic solutions can arise through a Hopf bifurcation and disappear through a homoclinic loop bifurcation. The existence of periodicity is important as it may indicate different strategies for controlling disease.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 10 条
[1]   Limit cycles in a disease transmission model [J].
Alwash, MAM .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 86 (01) :85-92
[2]  
BUSENBERG S, 1991, LECT NOTES BIOMATH, V92, P70
[3]  
Carr J., 1981, APPL MATH SC, V35
[4]   A DISEASE TRANSMISSION MODEL IN A NONCONSTANT POPULATION [J].
DERRICK, WR ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (05) :495-512
[5]   Melnikov analysis of chaos in a simple epidemiological model [J].
Glendinning, P ;
Perry, LP .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) :359-373
[6]  
Guckenheimer J, 1997, NONLINEAR OSCILLATIO
[7]   INFLUENCE OF NONLINEAR INCIDENCE RATES UPON THE BEHAVIOR OF SIRS EPIDEMIOLOGIC MODELS [J].
LIU, WM ;
LEVIN, SA ;
IWASA, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 1986, 23 (02) :187-204
[8]   DYNAMIC BEHAVIOR OF EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE RATES [J].
LIU, WM ;
HETHCOTE, HW ;
LEVIN, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (04) :359-380
[9]   Multiparametric bifurcations for a model in epidemiology [J].
Lizana, M ;
Rivero, J .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (01) :21-36
[10]   HETEROGENEITY IN DISEASE-TRANSMISSION MODELING [J].
NOLD, A .
MATHEMATICAL BIOSCIENCES, 1980, 52 (3-4) :227-240