Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3

被引:151
作者
Peña, MMO [1 ]
Puig, S [1 ]
Thiele, DJ [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1074/jbc.M005392200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Copper is an essential nutrient required for the activity of a number of enzymes with diverse biological roles, In the bakers' yeast Saccharomyces cerevisiae, copper is transported into cells by two high affinity copper transport proteins, Ctr1 and Ctr3. Although Ctr1 and Ctr3 are functionally redundant, they bear little homology at the amino acid sequence level, In this report, me characterize Ctr3 with respect to its localization, assembly, and post-transcriptional regulation. Ctr3 is an integral membrane protein that assembles as a trimer to form a competent copper uptake permease at the plasma membrane, Whereas the CTR1 and CTR3 genes are similarly regulated at the transcriptional level in response to copper, post-transcriptional regulation of these proteins is distinct, Unlike Ctr1, the Ctr3 transporter is neither regulated at the level of protein degradation nor endocytosis as a function of elevated copper levels. Our studies suggest that Ctr3 constitutes a fundamental module found in all eukaryotic high affinity copper transporters to date, which is sufficient for copper uptake but lacks elements for post-transcriptional regulation by copper.
引用
收藏
页码:33244 / 33251
页数:8
相关论文
共 45 条
[11]  
2-Z
[12]   The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator [J].
Georgatsou, E ;
Mavrogiannis, LA ;
Fragiadakis, GS ;
Alexandraki, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13786-13792
[13]   Protein disulfide isomerase and assisted protein folding [J].
Gilbert, HF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (47) :29399-29402
[14]   Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase [J].
Glerum, DM ;
Shtanko, A ;
Tzagoloff, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (24) :14504-14509
[15]   OXYGEN-TOXICITY, OXYGEN RADICALS, TRANSITION-METALS AND DISEASE [J].
HALLIWELL, B ;
GUTTERIDGE, JMC .
BIOCHEMICAL JOURNAL, 1984, 219 (01) :1-14
[16]   QUALITY-CONTROL IN THE SECRETORY PATHWAY [J].
HAMMOND, C ;
HELENIUS, A .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (04) :523-529
[17]   EVIDENCE FOR CU(II) REDUCTION AS A COMPONENT OF COPPER UPTAKE BY SACCHAROMYCES-CEREVISIAE [J].
HASSETT, R ;
KOSMAN, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (01) :128-134
[18]   AEQUOREA GREEN FLUORESCENT PROTEIN - EXPRESSION OF THE GENE AND FLUORESCENCE CHARACTERISTICS OF THE RECOMBINANT PROTEIN [J].
INOUYE, S ;
TSUJI, FI .
FEBS LETTERS, 1994, 341 (2-3) :277-280
[19]   Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae [J].
Jensen, LT ;
Posewitz, MC ;
Srinivasan, C ;
Winge, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) :23805-23811
[20]   Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae [J].
Jensen, LT ;
Winge, DR .
EMBO JOURNAL, 1998, 17 (18) :5400-5408