The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions

被引:101
作者
Dong, Yimin
VandenBeldt, Kristin J.
Meng, Xing
Khodjakov, Alexey
McEwen, Bruce F. [1 ]
机构
[1] SUNY Albany, Dept Biomed Sci, Sch Publ Hlth, Albany, NY 12201 USA
[2] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA
关键词
D O I
10.1038/ncb1576
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Intricate interactions between kinetochores and microtubules are essential for the proper distribution of chromosomes during mitosis. A crucial long-standing question is how vertebrate kinetochores generate chromosome motion while maintaining attachments to the dynamic plus ends of the multiple kinetochore MTs (kMTs) in a kinetochore fibre. Here, we demonstrate that individual kMTs in PtK1 cells are attached to the kinetochore outer plate by several fibres that either embed the microtubule plus- end tips in a radial mesh, or extend out from the outer plate to bind microtubule walls. The extended fibres also interact with the walls of nearby microtubules that are not part of the kinetochore fibre. These structural data, in combination with other recent reports, support a network model of kMT attachment wherein the fibrous network in the unbound outer plate, including the Hec1-Ndc80 complex, dissociates and rearranges to form kMT attachments.
引用
收藏
页码:516 / U56
页数:11
相关论文
共 32 条
[1]   FINE STRUCTURE OF KINETOCHORE OF A MAMMALIAN CELL IN VITRO [J].
BRINKLEY, BR ;
STUBBLEFIELD, E .
CHROMOSOMA, 1966, 19 (01) :28-+
[2]   The conserved KMN network constitutes the core microtubule-binding site of the kinetochore [J].
Cheeseman, Iain M. ;
Chappie, Joshua S. ;
Wilson-Kubalek, Elizabeth M. ;
Desai, Arshad .
CELL, 2006, 127 (05) :983-997
[3]   A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension [J].
Cheeseman, IM ;
Niessen, S ;
Anderson, S ;
Hyndman, F ;
Yates, JR ;
Oegema, K ;
Desai, A .
GENES & DEVELOPMENT, 2004, 18 (18) :2255-2268
[4]   Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast [J].
Cheeseman, IM ;
Drubin, DG ;
Barnes, G .
JOURNAL OF CELL BIOLOGY, 2002, 157 (02) :199-203
[5]   Architecture of the human Ndc80-Hec1 complex, a critical constituent of the outer kinetochore [J].
Ciferri, C ;
De Luca, J ;
Monzani, S ;
Ferrari, KJ ;
Ristic, D ;
Wyman, C ;
Stark, H ;
Kilmartin, J ;
Salmon, ED ;
Musacchio, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (32) :29088-29095
[6]   Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells [J].
Cimini, D ;
Howell, B ;
Maddox, P ;
Khodjakov, A ;
Degrassi, F ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 2001, 153 (03) :517-527
[7]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[8]   Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes [J].
De Wulf, P ;
McAinsh, AD ;
Sorger, PK .
GENES & DEVELOPMENT, 2003, 17 (23) :2902-2921
[9]   Kinetochore microtubule dynamics and attachment stability are regulated by Hec1 [J].
DeLuca, Jennifer G. ;
Gall, Walter E. ;
Ciferri, Claudio ;
Cimini, Daniela ;
Musacchio, Andrea ;
Salmon, E. D. .
CELL, 2006, 127 (05) :969-982
[10]   Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites [J].
DeLuca, JG ;
Dong, YM ;
Hergert, P ;
Strauss, J ;
Hickey, JM ;
Salmon, ED ;
McEwen, BF .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (02) :519-531