Symmetry properties of vibrational modes in graphene nanoribbons

被引:44
作者
Gillen, Roland [1 ]
Mohr, Marcel [1 ]
Maultzsch, Janina [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
关键词
IRREDUCIBLE REPRESENTATIONS;
D O I
10.1103/PhysRevB.81.205426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present symmetry properties of the lattice vibrations of graphene nanoribbons with pure armchair (AGNRs) and zigzag edges (ZGNRs). In nonsymmorphic nanoribbons, the phonon modes at the edge of the Brillouin zone are twofold degenerate whereas the phonon modes in symmorphic nanoribbons are nondegenerate. We identified the Raman-active and infrared-active modes. We predict 3N and 3 (N+1) Raman-active modes for N-ZGNRs and N-AGNRs, respectively (N is the number of dimers per unit cell). These modes can be used for the experimental characterization of graphene nanoribbons. Calculations based on density-functional theory suggest that the frequency splitting of the LO and TO modes in AGNRs (corresponding to the E-2g mode in graphene) exhibits characteristic width and family dependence. Further, all graphene nanoribbons have a Raman-active breathing like mode, the frequency of which is inversely proportional to the nanoribbon width and thus might be used for experimental determination of the width of graphene nanoribbons.
引用
收藏
页数:9
相关论文
共 32 条
[11]   Phonon dispersion of nano-graphite ribbons [J].
Igami, M ;
Fujita, M ;
Mizuno, S .
APPLIED SURFACE SCIENCE, 1998, 130 :870-875
[12]   Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities [J].
Kawai, T ;
Miyamoto, Y ;
Sugino, O ;
Koga, Y .
PHYSICAL REVIEW B, 2000, 62 (24) :R16349-R16352
[13]   Magnetic nanographite [J].
Kusakabe, K ;
Maruyama, M .
PHYSICAL REVIEW B, 2003, 67 (09) :924061-924064
[14]   Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states [J].
Lee, H ;
Son, YW ;
Park, N ;
Han, SW ;
Yu, JJ .
PHYSICAL REVIEW B, 2005, 72 (17)
[15]   Comparison of Raman spectra and vibrational density of states between graphene nanoribbons with different edges [J].
Malola, S. ;
Hakkinen, H. ;
Koskinen, P. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 52 (1-3) :71-74
[16]   Electronic and transport properties of rectangular graphene macromolecules and zigzag carbon nanotubes of finite length [J].
Nikolaev, A. V. ;
Bibikov, A. V. ;
Avdeenkov, A. V. ;
Bodrenko, I. V. ;
Tkalya, E. V. .
PHYSICAL REVIEW B, 2009, 79 (04)
[17]   Self-consistent order-N density-functional calculations for very large systems [J].
Ordejon, P ;
Artacho, E ;
Soler, JM .
PHYSICAL REVIEW B, 1996, 53 (16) :10441-10444
[18]   SELF-INTERACTION CORRECTION TO DENSITY-FUNCTIONAL APPROXIMATIONS FOR MANY-ELECTRON SYSTEMS [J].
PERDEW, JP ;
ZUNGER, A .
PHYSICAL REVIEW B, 1981, 23 (10) :5048-5079
[19]   Breakdown of the adiabatic Born-Oppenheimer approximation in graphene [J].
Pisana, Simone ;
Lazzeri, Michele ;
Casiraghi, Cinzia ;
Novoselov, Kostya S. ;
Geim, A. K. ;
Ferrari, Andrea C. ;
Mauri, Francesco .
NATURE MATERIALS, 2007, 6 (03) :198-201
[20]   The SIESTA method for ab initio order-N materials simulation [J].
Soler, JM ;
Artacho, E ;
Gale, JD ;
García, A ;
Junquera, J ;
Ordejón, P ;
Sánchez-Portal, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) :2745-2779