Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level

被引:119
作者
Neuweiler, H
Schulz, A
Böhmer, M
Enderlein, J [1 ]
Sauer, M
机构
[1] IBI 1, Forschungszentrum Julich, D-52428 Julich, Germany
[2] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
关键词
D O I
10.1021/ja034040p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe a single-molecule-sensitive method to determine the rate of contact formation and dissociation between tryptophan and an oxazine derivative (MR121) on the basis of measurements of the photon distance distribution. Two short peptides (15 and 20 amino acids) derived from the transactivation domain of the human oncoprotein p53 were investigated. With the fluorophore attached at the N-terminal end of the flexible peptides, fluorescence of the dye is efficiently quenched upon contact formation with a tryptophan residue. The mechanism responsible for the efficient fluorescence quenching observed in the complexes is assumed to be a photoinduced electron-transfer reaction occurring predominantly at van der Waals contact. Fluorescence fluctuations caused by intramolecular contact formation and dissociation were recorded using confocal fluorescence microscopy with two avalanche photodiodes and the time-correlated single-photon-counting technique, enabling a temporal resolution of 1.2 ns. Peptides containing a tryptophan residue at positions 9 and 8, respectively, show contact formation with rate constants of 1/120 and 1/152 ns(-1), respectively. Whereas the rate constants of contact formation most likely directly report on biopolymer chain mobility, the dissociation rate constants of 1/267 and 1/742 ns(-1), respectively, are significantly smaller and reflect strong hydrophobic interactions between the dye and tryptophan. Fluorescence experiments on point-mutated peptides where tryptophan is exchanged by phenylalanine show no fluorescence quenching.
引用
收藏
页码:5324 / 5330
页数:7
相关论文
共 52 条
[1]   Ultrafast energy transfer in LHC-II revealed by three-pulse photon echo peak shift measurements [J].
Agarwal, R ;
Krueger, BP ;
Scholes, GD ;
Yang, M ;
Yom, J ;
Mets, L ;
Fleming, GR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (13) :2908-2918
[2]   PHOTON ANTIBUNCHING IN THE FLUORESCENCE OF A SINGLE DYE MOLECULE TRAPPED IN A SOLID [J].
BASCHE, T ;
MOERNER, WE ;
ORRIT, M ;
TALON, H .
PHYSICAL REVIEW LETTERS, 1992, 69 (10) :1516-1519
[3]  
Böhmer M, 2001, REV SCI INSTRUM, V72, P4145, DOI 10.1063/1.1406926
[4]   Kinetics of conformational fluctuations in DNA hairpin-loops [J].
Bonnet, G ;
Krichevsky, O ;
Libchaber, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8602-8606
[5]   CORRELATION BETWEEN PHOTONS IN 2 COHERENT BEAMS OF LIGHT [J].
BROWN, RH ;
TWISS, RQ .
NATURE, 1956, 177 (4497) :27-29
[6]   STABILITY OF ALPHA-HELICES [J].
CHAKRABARTTY, A ;
BALDWIN, RL .
ADVANCES IN PROTEIN CHEMISTRY, VOL 46, 1995, 46 :141-176
[7]   A fluorescence assay for leucine zipper dimerization: Avoiding unintended consequences of fluorophore attachment [J].
Daugherty, DL ;
Gellman, SH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (18) :4325-4333
[8]   ELECTROCHEMICAL PROPERTIES OF TYROSINE PHENOXY AND TRYPTOPHAN INDOLYL RADICALS IN PEPTIDES AND AMINO-ACID-ANALOGS [J].
DEFELIPPIS, MR ;
MURTHY, CP ;
BROITMAN, F ;
WEINRAUB, D ;
FARAGGI, M ;
KLAPPER, MH .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (08) :3416-3419
[9]   Cell surface receptors [J].
Deller, MC ;
Jones, EY .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) :213-219
[10]   Fast kinetics and mechanisms in protein folding [J].
Eaton, WA ;
Muñoz, V ;
Hagen, SJ ;
Jas, GS ;
Lapidus, LJ ;
Henry, ER ;
Hofrichter, J .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2000, 29 :327-359