Parametric representation of noncommutative field theory

被引:40
作者
Gurau, Razvan [1 ]
Rivasseau, Vincent [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France
关键词
D O I
10.1007/s00220-007-0215-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the Schwinger parametric representation for the Feynman amplitudes of the recently discovered renormalizable phi(4)(4) quantum field theory on the Moyal non cummutative R-4 space. This representation involves new hyperbolic polynomials which are the non-commutative analogs of the usual "Kirchoff" or "Symanzik" polynomials of commutative field theory, but contain richer topological information.
引用
收藏
页码:811 / 835
页数:25
相关论文
共 21 条
[1]   The Grassmann-Berezin calculus and theorems of the matrix-tree type [J].
Abdesselam, A .
ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) :51-70
[2]   BOGOLUBOV-PARASIUK THEOREM IN ALPHA-PARAMETRIC REPRESENTATION [J].
BERGERE, MC ;
LAM, YMP .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) :1546-1557
[3]  
Chepelev I, 2000, J HIGH ENERGY PHYS
[4]  
CHEPELEV L, 2001, JHEP, V103
[5]  
Connes A, 2006, FRONTIERS IN NUMBER THEORY, PHYSICS AND GEOMETRY I, P269
[6]   Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) :249-273
[7]  
Connes A., 1998, J HIGH ENERGY PHYS, V02, P003, DOI 10.1088/1126-6708/1998/02/003
[8]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[9]   Divergencies in a field theory on quantum space [J].
Filk, T .
PHYSICS LETTERS B, 1996, 376 (1-3) :53-58
[10]   Renormalisation of σ4-theory on noncommutative R4 stop in the matrix base [J].
Grosse, H ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (02) :305-374