Upconversion nanoparticles in biological labeling, imaging, and therapy

被引:1172
作者
Wang, Feng [1 ,2 ]
Banerjee, Debapriya [1 ]
Liu, Yongsheng [3 ]
Chen, Xueyuan [3 ]
Liu, Xiaogang [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem, Fac Sci, Singapore 117543, Singapore
[2] Singapore MIT Alliance, Adv Mat Micro & Nanosyst Program, Singapore 117576, Singapore
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China
关键词
RESONANCE ENERGY-TRANSFER; MICROWAVE HYDROTHERMAL SYNTHESIS; LN(3+)-DOPED LAF3 NANOPARTICLES; CONVERTING PHOSPHOR REPORTERS; DIFFUSE OPTICAL TOMOGRAPHY; POLYOL-MEDIATED SYNTHESIS; NEAR-INFRARED NIR; PHOTODYNAMIC THERAPY; IN-VIVO; SURFACE MODIFICATION;
D O I
10.1039/c0an00144a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Upconversion refers to non-linear optical processes that convert two or more low-energy pump photons to a higher-energy output photon. After being recognized in the mid-1960s, upconversion has attracted significant research interest for its applications in optical devices such as infrared quantum counter detectors and compact solid-state lasers. Over the past decade, upconversion has become more prominent in biological sciences as the preparation of high-quality lanthanide-doped nanoparticles has become increasingly routine. Owing to their small physical dimensions and biocompatibility, upconversion nanoparticles can be easily coupled to proteins or other biological macromolecular systems and used in a variety of assay formats ranging from bio-detection to cancer therapy. In addition, intense visible emission from these nanoparticles under near-infrared excitation, which is less harmful to biological samples and has greater sample penetration depths than conventional ultraviolet excitation, enhances their prospects as luminescent stains in bio-imaging. In this article, we review recent developments in optical biolabeling and bio-imaging involving upconversion nanoparticles, simultaneously bringing to the forefront the desirable characteristics, strengths and weaknesses of these
引用
收藏
页码:1839 / 1854
页数:16
相关论文
共 212 条
[1]   Hard Proof of the NaYF4/NaGdF4 Nanocrystal Core/Shell Structure [J].
Abel, Keith A. ;
Boyer, John-Christopher ;
van Veggel, Frank C. J. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (41) :14644-+
[2]   Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline β-NaGdF4:Yb3+, Er3+ [J].
Aebischer, A ;
Heer, S ;
Biner, D ;
Krämer, K ;
Haase, M ;
Güdel, HU .
CHEMICAL PHYSICS LETTERS, 2005, 407 (1-3) :124-128
[3]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[4]   On-off blinking and multiple bright states of single europium ions in Eu3+:Y2O3 nanocrystals [J].
Barnes, MD ;
Mehta, A ;
Thundat, T ;
Bhargava, RN ;
Chhabra, V ;
Kulkarni, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (26) :6099-6102
[5]   Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and Imaging at the single-molecule level [J].
Beaurepaire, E ;
Buissette, V ;
Sauviat, MP ;
Giaume, D ;
Lahlil, K ;
Mercuri, A ;
Casanova, D ;
Huignard, A ;
Martin, JL ;
Gacoin, T ;
Boilot, JP ;
Alexandrou, A .
NANO LETTERS, 2004, 4 (11) :2079-2083
[6]   Lanthanide-Based Luminescent Hybrid Materials [J].
Binnemans, Koen .
CHEMICAL REVIEWS, 2009, 109 (09) :4283-4374
[7]  
Blasse G., 1994, LUMINESCENT MAT, P1, DOI [10.1007/978-3-642-79017-1_1, DOI 10.1007/978-3-642-79017-1_1, 10.1007/978-3-642-79017-11, DOI 10.1007/978-3-642-79017-11]
[8]   Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J].
Boyer, John-Christopher ;
Vetrone, Fiorenzo ;
Cuccia, Louis A. ;
Capobianco, John A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (23) :7444-7445
[9]   Surface Modification of Upconverting NaYF4 Nanoparticles with PEG-Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window [J].
Boyer, John-Christopher ;
Manseau, Marie-Pascale ;
Murray, Jill I. ;
van Veggel, Frank C. J. M. .
LANGMUIR, 2010, 26 (02) :1157-1164
[10]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016