A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates

被引:31
作者
Ansaldo, Alberto
Haluska, Miroslav
Cech, Jiri
Meyer, Jannik C.
Ricci, Davide
Gatti, Flavio
Di Zitti, Ermanno
Cincotti, Silvano
Roth, Siegmar
机构
[1] Univ Genoa, Dipartimento Ingn Biofis & Elettron, I-16145 Genoa, Italy
[2] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[3] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
fabrication of single-wall carbon nanotubes; SWCNT; chemical vapour deposition; fabrication and characterization of nanoscale materials;
D O I
10.1016/j.physe.2006.09.008
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the identification of efficient combinations of catalyst, carbon feedstock, and temperature for the ethanol chemical vapour deposition (CVD) growth of single-wall carbon nanotubes (SWCNTs) onto silicon substrates. Different catalyst preparations, based on organometallic salts (Co, Fe, Mo, Ni acetate, and bimetallic mixtures), have been spin coated onto thermally grown silicon dioxide on silicon chips to perform tests in a temperature range between 500 and 900 degrees C. The samples have been then characterized by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. Assuming the growth of high-quality isolated nanotubes as target, the ratio in Raman spectra between the intensity of the G peak and of the D peak has been used as the main parameter to evaluate the performance of the catalytic process. A comparison made for both single metals and bimetallic mixtures points out best conditions to achieve efficient CVD growth of SWCNTs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 2005, INT TECHNOLOGY ROADM
[2]   Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Chen, ZH ;
Avouris, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2568-2576
[3]   Carbon nanotubes: opportunities and challenges [J].
Dai, HJ .
SURFACE SCIENCE, 2002, 500 (1-3) :218-241
[4]   Carbon nanotube inter- and intramolecular logic gates [J].
Derycke, V ;
Martel, R ;
Appenzeller, J ;
Avouris, P .
NANO LETTERS, 2001, 1 (09) :453-456
[5]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN
[6]   Growth of isolated carbon nanotubes with lithographically defined diameter and location [J].
Duesberg, GS ;
Graham, AP ;
Liebau, M ;
Seidel, R ;
Unger, E ;
Kreupl, F ;
Hoenlein, W .
NANO LETTERS, 2003, 3 (02) :257-259
[7]   How do carbon nanotubes fit into the semiconductor roadmap? [J].
Graham, AP ;
Duesberg, GS ;
Hoenlein, W ;
Kreupl, F ;
Liebau, M ;
Martin, R ;
Rajasekharan, B ;
Pamler, W ;
Seidel, R ;
Steinhoegl, W ;
Unger, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1141-1151
[8]   Interconnection of nanostructures using carbon nanotubes [J].
Homma, Y ;
Yamashita, T ;
Kobayashi, Y ;
Ogino, T .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :122-123
[9]   High performance n-type carbon nanotube field-effect transistors with chemically doped contacts [J].
Javey, A ;
Tu, R ;
Farmer, DB ;
Guo, J ;
Gordon, RG ;
Dai, HJ .
NANO LETTERS, 2005, 5 (02) :345-348
[10]   Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns [J].
Jung, YJ ;
Wei, BQ ;
Vajtai, R ;
Ajayan, PM .
NANO LETTERS, 2003, 3 (04) :561-564