Using convolutional features and a sparse autoencoder for land-use scene classification

被引:143
作者
Othmana, Esam [1 ]
Bazi, Yakoub [1 ]
Alajlan, Naif [1 ]
Alhichri, Haikel [1 ]
Melgani, Farid [2 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[2] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
关键词
NEURAL-NETWORKS; OBJECT DETECTION; DEEP; IMAGES; DOMAIN;
D O I
10.1080/01431161.2016.1171928
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we propose a novel approach based on convolutional features and sparse autoencoder (AE) for scene-level land-use (LU) classification. This approach starts by generating an initial feature representation of the scenes under analysis from a deep convolutional neural network (CNN) pre-learned on a large amount of labelled data from an auxiliary domain. Then these convolutional features are fed as input to a sparse AE for learning a new suitable representation in an unsupervised manner. After this pre-training phase, we propose two different scenarios for building the classification system. In the first scenario, we add a softmax layer on the top of the AE encoding layer and then fine-tune the resulting network in a supervised manner using the target training images available at hand. Then we classify the test images based on the posterior probabilities provided by the softmax layer. In the second scenario, we view the classification problem from a reconstruction perspective. To this end we train several class-specific AEs (i.e. one AE per class) and then classify the test images based on the reconstruction error. Experimental results conducted on the University of California (UC) Merced and Banja-Luka LU public data sets confirm the superiority of the proposed approach compared to state-of-the-art methods.
引用
收藏
页码:2149 / 2167
页数:19
相关论文
共 41 条
  • [31] Risojevic V, 2011, LECT NOTES COMPUT SC, V6594, P51, DOI 10.1007/978-3-642-20267-4_6
  • [32] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    [J]. NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [33] Schweikert G., 2008, ADV NEURAL INFORM PR, P1433
  • [34] Srivastava N, 2014, J MACH LEARN RES, V15, P1929
  • [35] Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine
    Tang, Jiexiong
    Deng, Chenwei
    Huang, Guang-Bin
    Zhao, Baojun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1174 - 1185
  • [36] Vedaldi A., 2014, P ACM INT C MULT
  • [37] Vincent P., 2008, P 25 INT C MACHINE L, P1096, DOI DOI 10.1145/1390156.1390294
  • [38] Yang Y, 2011, IEEE I CONF COMP VIS, P1465, DOI 10.1109/ICCV.2011.6126403
  • [39] Yang Yi, 2010, P 18 SIGSPATIAL INT, P270, DOI DOI 10.1145/1869790.1869829
  • [40] Scene Classification via a Gradient Boosting Random Convolutional Network Framework
    Zhang, Fan
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1793 - 1802