Using convolutional features and a sparse autoencoder for land-use scene classification

被引:143
作者
Othmana, Esam [1 ]
Bazi, Yakoub [1 ]
Alajlan, Naif [1 ]
Alhichri, Haikel [1 ]
Melgani, Farid [2 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[2] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
关键词
NEURAL-NETWORKS; OBJECT DETECTION; DEEP; IMAGES; DOMAIN;
D O I
10.1080/01431161.2016.1171928
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we propose a novel approach based on convolutional features and sparse autoencoder (AE) for scene-level land-use (LU) classification. This approach starts by generating an initial feature representation of the scenes under analysis from a deep convolutional neural network (CNN) pre-learned on a large amount of labelled data from an auxiliary domain. Then these convolutional features are fed as input to a sparse AE for learning a new suitable representation in an unsupervised manner. After this pre-training phase, we propose two different scenarios for building the classification system. In the first scenario, we add a softmax layer on the top of the AE encoding layer and then fine-tune the resulting network in a supervised manner using the target training images available at hand. Then we classify the test images based on the posterior probabilities provided by the softmax layer. In the second scenario, we view the classification problem from a reconstruction perspective. To this end we train several class-specific AEs (i.e. one AE per class) and then classify the test images based on the reconstruction error. Experimental results conducted on the University of California (UC) Merced and Banja-Luka LU public data sets confirm the superiority of the proposed approach compared to state-of-the-art methods.
引用
收藏
页码:2149 / 2167
页数:19
相关论文
共 41 条
  • [21] A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    Huang, Xin
    Lu, Qikai
    Zhang, Liangpei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 90 : 36 - 48
  • [22] The Potential Energy of an Autoencoder
    Kamyshanska, Hanna
    Memisevic, Roland
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (06) : 1261 - 1273
  • [23] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [24] ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION
    LIU, DC
    NOCEDAL, J
    [J]. MATHEMATICAL PROGRAMMING, 1989, 45 (03) : 503 - 528
  • [25] Multiview Deep Learning for Land-Use Classification
    Luus, F. P. S.
    Salmon, B. P.
    van den Bergh, F.
    Maharaj, B. T. J.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2448 - 2452
  • [26] Traffic Flow Prediction With Big Data: A Deep Learning Approach
    Lv, Yisheng
    Duan, Yanjie
    Kang, Wenwen
    Li, Zhengxi
    Wang, Fei-Yue
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (02) : 865 - 873
  • [27] Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks
    Marmanis, Dimitrios
    Datcu, Mihai
    Esch, Thomas
    Stilla, Uwe
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (01) : 105 - 109
  • [28] Land-Use Classification With Compressive Sensing Multifeature Fusion
    Mekhalfi, Mohamed L.
    Melgani, Farid
    Bazi, Yakoub
    Alajlan, Naif
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (10) : 2155 - 2159
  • [29] NOCEDAL J, 1980, MATH COMPUT, V35, P773, DOI 10.1090/S0025-5718-1980-0572855-7
  • [30] Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks
    Oquab, Maxime
    Bottou, Leon
    Laptev, Ivan
    Sivic, Josef
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1717 - 1724