Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films

被引:127
作者
Arenal, R.
Bruno, P.
Miller, D. J.
Bleuel, M.
Lal, J.
Gruen, D. M.
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 19期
关键词
D O I
10.1103/PhysRevB.75.195431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Further progress in the development of the remarkable electrochemical, electron field emission, high-temperature diode, and optical properties of n- type ultrananocrystalline diamond films requires a better understanding of electron transport in this material. Of particular interest is the origin of the transition to the metallic regime observed when about 10% by volume of nitrogen has been added to the synthesis gas. Here, we present data showing that the transition to the metallic state is due to the formation of partially oriented diamond nanowires surrounded by an sp(2)-bonded carbon sheath. These have been characterized by scanning electron microscopy, transmission electron microscopy techniques (high- resolution mode, selected area electron diffraction, and electron- energy- loss spectroscopy), Raman spectroscopy, and small- angle neutron scattering. The nanowires are 80 - 100 nm in length and consist of similar to 5 nm wide and 6 - 10 nm long segments of diamond crystallites exhibiting atomically sharp interfaces. Each nanowire is enveloped in a sheath of sp(2)- bonded carbon that provides the conductive path for electrons. Raman spectroscopy on the films coupled with a consideration of plasma chemical and physical processes reveals that the sheath is likely composed of a nanocarbon material resembling in some respects a polymer- like mixture of polyacetylene and polynitrile. The complex interactions governing the simultaneous growth of the diamond core and the sp(2) sheath responsible for electrical conductivity are discussed as are attempts at a better theoretical understanding of the transport mechanism.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates [J].
Achatz, P. ;
Williams, O. A. ;
Bruno, P. ;
Gruen, D. M. ;
Garrido, J. A. ;
Stutzmann, M. .
PHYSICAL REVIEW B, 2006, 74 (15)
[2]   Optical properties of nanocrystalline diamond thin films [J].
Achatz, P ;
Garrido, JA ;
Stutzmann, M ;
Williams, OA ;
Gruen, DM ;
Kromka, A ;
Steinmüller, D .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[3]   Structural and chemical characterisation of soot particles formed in Ar/H2/CH4 microwave discharges during nanocrystalline diamond film synthesis [J].
Aggadi, N. ;
Arnas, C. ;
Benedic, F. ;
Dominique, C. ;
Duten, X. ;
Silva, F. ;
Hassouni, K. ;
Gruen, D. M. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) :908-912
[4]  
Arenal R, 2004, AIP CONF PROC, V723, P293, DOI 10.1063/1.1812093
[5]  
ARENAL R, 2006, MICROSC MICROANAL, V12, P1188
[6]   Transport properties of n-type ultrananocrystalline diamond films [J].
Beloborodov, I. S. ;
Zapol, P. ;
Gruen, D. M. ;
Curtiss, L. A. .
PHYSICAL REVIEW B, 2006, 74 (23)
[7]   Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond -: art. no. 125412 [J].
Bhattacharyya, S .
PHYSICAL REVIEW B, 2004, 70 (12) :125412-1
[8]   Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films [J].
Bhattacharyya, S ;
Auciello, O ;
Birrell, J ;
Carlisle, JA ;
Curtiss, LA ;
Goyette, AN ;
Gruen, DM ;
Krauss, AR ;
Schlueter, J ;
Sumant, A ;
Zapol, P .
APPLIED PHYSICS LETTERS, 2001, 79 (10) :1441-1443
[9]   Bonding structure in nitrogen doped ultrananocrystalline diamond [J].
Birrell, J ;
Gerbi, JE ;
Auciello, O ;
Gibson, JM ;
Gruen, DM ;
Carlisle, JA .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (09) :5606-5612
[10]   Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond [J].
Birrell, J ;
Carlisle, JA ;
Auciello, O ;
Gruen, DM ;
Gibson, JM .
APPLIED PHYSICS LETTERS, 2002, 81 (12) :2235-2237