Underwater Sound Generation Using Carbon Nanotube Projectors

被引:118
作者
Aliev, Ali E. [1 ]
Lima, Marcio D. [1 ]
Fang, Shaoli [1 ]
Baughman, Ray H. [1 ]
机构
[1] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA
关键词
Carbon nanotubes; thermoacoustic; sound generation; sonar; TRANSPARENT; CONDUCTIVITY; SHEETS;
D O I
10.1021/nl100235n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of solid-state fabricated carbon nanotube sheets as thermoacoustic projectors is extended from air to underwater applications, thereby providing surprising results While the acoustic generation efficiency of a liquid immersed nanotube sheet is profoundly degraded by nanotube wetting, the hydrophobicity of the nanotube sheets in water results in an air envelope about the nanotubes that increases pressure generation efficiency a hundred-fold over that obtained by immersion in wetting alcohols Due to nonresonant sound generation, the emission spectrum of a liquid-immersed nanotube sheet varies smoothly over a wide frequency range, 1-10(5) Hz The sound projection efficiency of nanotube sheets substantially exceeds that of much heavier and thicker ferroelectric acoustic projectors in the important region below about 4 and this performance advantage Increases with decreasing frequency While increasing thickness by stacking sheets eventually degrades performance due to decreased ability to rapidly transform thermal energy to acoustic pulses, use of tandem stacking of separated nanotube sheets (that are addressed with phase delay) eliminates this problem Encapsulating the nanotube sheet projectors in argon provided attractive performance at needed low frequencies, as well as a realized energy conversion efficiency in air of 0.2%. which can be enhanced by increasing the modulation of temperature
引用
收藏
页码:2374 / 2380
页数:7
相关论文
共 20 条
[1]  
Aliev AE, 2005, J COMMUN TECHNOL EL+, V50, P1074
[2]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[3]   Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes [J].
Aliev, Ali E. ;
Lima, Marcio H. ;
Silverman, Edward M. ;
Baughman, Ray H. .
NANOTECHNOLOGY, 2010, 21 (03)
[4]   Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles [J].
Aliev, Ali E. ;
Oh, Jiyoung ;
Kozlov, Mikhail E. ;
Kuznetsov, Alexander A. ;
Fang, Shaoli ;
Fonseca, Alexandre F. ;
Ovalle, Raquel ;
Lima, Marcio D. ;
Haque, Mohammad H. ;
Gartstein, Yuri N. ;
Zhang, Mei ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
SCIENCE, 2009, 323 (5921) :1575-1578
[5]  
[Anonymous], **NON-TRADITIONAL**
[6]  
BRAUN F, 1898, ANN PHYS, V65, P358
[7]   Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties [J].
Chirila, V ;
Marginean, G ;
Brandl, W .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4) :548-551
[8]   Flexible optically transparent single-walled carbon nanotube electrodes for UV-Vis absorption spectroelectrochemistry [J].
Heras, Aranzazu ;
Colina, Alvaro ;
Lopez-Palacios, Jesus ;
Kaskela, Antti ;
Nasibulin, Albert G. ;
Ruiz, Virginia ;
Kauppinen, Esko I. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) :442-445
[9]   Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties [J].
Liu, Kai ;
Sun, Yinghui ;
Chen, Lei ;
Feng, Chen ;
Feng, Xiaofeng ;
Jiang, Kaili ;
Zhao, Yonggang ;
Fan, Shoushan .
NANO LETTERS, 2008, 8 (02) :700-705
[10]   GENERALIZED THEORY OF PHOTOACOUSTIC EFFECT [J].
MCDONALD, FA ;
WETSEL, GC .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (04) :2313-2322