Effect of Nanostructuring and Ex situ Amorphous Carbon Coverage on the Lithium Storage and Insertion Kinetics in Anatase Titania

被引:38
作者
Das, Shyamal K. [1 ]
Patel, Manu [1 ]
Bhattacharyya, Aninda J. [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
关键词
anatase titanium dioxide; nanoparticles; carbon coating; insertion; percolation; lithium-ion battery; TIO2; ANATASE; ION BATTERIES; PARTICLE-SIZE; INTERCALATION; ELECTRODES; SPINEL; NANOPARTICLES; CONDUCTIVITY; PERFORMANCE; REACTIVITY;
D O I
10.1021/am1003409
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics in nanoparticles of anatase polymorph of titania is discussed here. Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.
引用
收藏
页码:2091 / 2099
页数:9
相关论文
共 49 条
  • [1] Electronic conductivity in nanostructured TiO2 films permeated with electrolyte
    Abayev, I
    Zaban, A
    Fabregat-Santiago, F
    Bisquert, J
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 196 (01): : R4 - R6
  • [2] TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries
    Armstrong, G
    Armstrong, AR
    Canales, J
    Bruce, PG
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) : A139 - A143
  • [3] Nano-ionics in the context of lithium batteries
    Balaya, P.
    Bhattacharyya, A. J.
    Jamnik, J.
    Zhukovskii, Yu. F.
    Kotomin, E. A.
    Maier, J.
    [J]. JOURNAL OF POWER SOURCES, 2006, 159 (01) : 171 - 178
  • [4] THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS
    BARRETT, EP
    JOYNER, LG
    HALENDA, PP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) : 373 - 380
  • [5] THE CRYSTAL-STRUCTURES OF THE LITHIUM-INSERTED METAL-OXIDES LI0.5TIO2 ANATASE, LITI2O4 SPINEL, AND LI2TI2O4
    CAVA, RJ
    MURPHY, DW
    ZAHURAK, S
    SANTORO, A
    ROTH, RS
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1984, 53 (01) : 64 - 75
  • [6] SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries
    Chen, Jun Song
    Cheah, Yan Ling
    Chen, Yuan Ting
    Jayaprakash, N.
    Madhavi, Srinivasan
    Yang, Yan Hui
    Lou, Xiong Wen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) : 20504 - 20508
  • [7] Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties
    Dambournet, Damien
    Belharouak, Ilias
    Amine, Khalil
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1173 - 1179
  • [8] High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon
    Das, Shyamal K.
    Darmakolla, Srikarrao
    Bhattacharyya, Aninda J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (08) : 1600 - 1606
  • [9] The electrical conductivity of titanium dioxide
    Earle, MD
    [J]. PHYSICAL REVIEW, 1942, 61 (1/2): : 56 - 62
  • [10] RuO2-wired high-rate nanoparticulate TiO2 (anatase):: Suppression of particle growth using silica
    Erjavec, B.
    Dominko, R.
    Umek, P.
    Sturm, S.
    Pejovnik, S.
    Gaberscek, M.
    Jamnik, J.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (06) : 926 - 929