Effect of Nanostructuring and Ex situ Amorphous Carbon Coverage on the Lithium Storage and Insertion Kinetics in Anatase Titania

被引:38
作者
Das, Shyamal K. [1 ]
Patel, Manu [1 ]
Bhattacharyya, Aninda J. [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
关键词
anatase titanium dioxide; nanoparticles; carbon coating; insertion; percolation; lithium-ion battery; TIO2; ANATASE; ION BATTERIES; PARTICLE-SIZE; INTERCALATION; ELECTRODES; SPINEL; NANOPARTICLES; CONDUCTIVITY; PERFORMANCE; REACTIVITY;
D O I
10.1021/am1003409
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics in nanoparticles of anatase polymorph of titania is discussed here. Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.
引用
收藏
页码:2091 / 2099
页数:9
相关论文
共 49 条
  • [31] TERNARY LIXTIO2 PHASES FROM INSERTION REACTIONS
    MURPHY, DW
    CAVA, RJ
    ZAHURAK, SM
    SANTORO, A
    [J]. SOLID STATE IONICS, 1983, 9-10 (DEC) : 413 - 417
  • [32] Lithium intercalation in TiO2 modifications
    Nuspl, G
    Yoshizawa, K
    Yamabe, T
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (12) : 2529 - 2536
  • [33] NON-AQUEOUS LITHIUM-TITANIUM DIOXIDE CELL
    OHZUKU, T
    TAKEHARA, Z
    YOSHIZAWA, S
    [J]. ELECTROCHIMICA ACTA, 1979, 24 (02) : 219 - 222
  • [34] ELECTROCHEMISTRY OF ANATASE TITANIUM-DIOXIDE IN LITHIUM NONAQUEOUS CELLS
    OHZUKU, T
    KODAMA, T
    HIRAI, T
    [J]. JOURNAL OF POWER SOURCES, 1985, 14 (1-3) : 153 - 166
  • [35] Olson CL, 2006, J PHYS CHEM B, V110, P9995, DOI [10.1021/jp057261l, 10.1021/jp0572611]
  • [36] A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS
    OREGAN, B
    GRATZEL, M
    [J]. NATURE, 1991, 353 (6346) : 737 - 740
  • [37] Electrode engineering of nanoparticles for lithium-ion batteries-Role of dispersion technique
    Patey, T. J.
    Hintennach, A.
    La Mantia, F.
    Novak, P.
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 590 - 593
  • [38] Preparation, characterization, and electrochemical performances of carbon-coated TiO2 anatase
    Pfanzelt, Manuel
    Kubiak, Pierre
    Hoermann, Ute
    Kaiser, Ute
    Wohlfahrt-Mehrens, Margret
    [J]. IONICS, 2009, 15 (06) : 657 - 663
  • [39] REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984)
    SING, KSW
    EVERETT, DH
    HAUL, RAW
    MOSCOU, L
    PIEROTTI, RA
    ROUQUEROL, J
    SIEMIENIEWSKA, T
    [J]. PURE AND APPLIED CHEMISTRY, 1985, 57 (04) : 603 - 619
  • [40] Theoretical study of lithium intercalation in rutile and anatase
    Stashans, A
    Lunell, S
    Bergstrom, R
    Hagfeldt, A
    Lindquist, SE
    [J]. PHYSICAL REVIEW B, 1996, 53 (01): : 159 - 170