Low-lying eigenvalues of the QCD Dirac operator at finite temperature

被引:29
作者
Damgaard, PH
Heller, UM [1 ]
Niclasen, R
Rummukainen, K
机构
[1] Florida State Univ, CSIT, Tallahassee, FL 32306 USA
[2] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[3] NORDITA, DK-2100 Copenhagen, Denmark
[4] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1016/S0550-3213(00)00345-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the low-lying spectrum of the staggered Dirac operator above and below the finite temperature phase transition in both quenched QCD and in dynamical four flavor QCD. In both cases we find, in the high temperature phase, a density with close to square root behavior, rho(lambda) similar to (lambda - lambda(0))(1/2). In the quenched simulations we find, in addition, a volume independent tail of small eigenvalues extending down to zero. In the dynamical simulations we also find a tail, decreasing with decreasing mass, at the small end of the spectrum. However, the tail falls off quits quickly and does not seem to extend to zero at these couplings. We find that the distribution of the smallest Dirac operator eigenvalues provides an efficient observable fur an accurate determination of the location of the chiral phase transition, as first suggested by Jackson and Verbaarschot. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:347 / 367
页数:21
相关论文
共 51 条
[1]   Multicritical microscopic spectral correlators of Hermitian and complex matrices [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, SM .
NUCLEAR PHYSICS B, 1998, 519 (03) :682-714
[2]   Consistency conditions for finite-volume partition functions [J].
Akemann, G ;
Damgaard, PH .
PHYSICS LETTERS B, 1998, 432 (3-4) :390-396
[3]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[4]  
AKEMANN G, HEPTH0001188
[5]   Microscopic universality in the spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1146-1149
[6]   Microscopic universality with dynamical fermions [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Wettig, T .
PHYSICAL REVIEW D, 1998, 58 (07)
[7]   Crossover to non-universal microscopic spectral fluctuations in lattice gauge theory [J].
Berbenni-Bitsch, ME ;
Gockeler, M ;
Guhr, T ;
Jackson, AD ;
Ma, JZ ;
Meyer, S ;
Schafer, A ;
Weidenmuller, HA ;
Wettig, T ;
Wilke, T .
PHYSICS LETTERS B, 1998, 438 (1-2) :14-20
[8]   Quantum chaos in compact lattice QED [J].
Berg, BA ;
Markum, H ;
Pullirsch, R .
PHYSICAL REVIEW D, 1999, 59 (09) :1-4
[9]  
BERNARD C, 1997, PHYS REV LETT, V98, P253
[10]   UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS [J].
BOWICK, MJ ;
BREZIN, E .
PHYSICS LETTERS B, 1991, 268 (01) :21-28