Titanium dioxide nanotubes enhance bone bonding in vivo

被引:302
作者
Bjursten, Lars M. [1 ,2 ]
Rasmusson, Lars [3 ]
Oh, Seunghan [4 ,5 ]
Smith, Garrett C. [1 ,2 ]
Brammer, Karla S. [4 ]
Jin, Sungho [4 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Lund Univ, Malmo, Sweden
[3] Univ Gothenburg, Dept Oral & Maxillofacial Surg, Sahlgrenska Acad, Gothenburg, Sweden
[4] Univ Calif San Diego, Mat Sci & Engn Program, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[5] Wonkwang Univ, Coll Dent, Dept Dent Biomat, Iksan, South Korea
关键词
titanium dioxide nanotube; bone implant; osseointegration; mechanical strength; histology; SURFACE; IMPLANTS; MORPHOLOGY; COATINGS; ADHESION; GROWTH;
D O I
10.1002/jbm.a.32463
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Implant topography is critical to the clinical Success of bone-anchored implants, yet little is known how nano-modified implant topography affects osseointegration. We investigate the in vivo bone bonding of two titanium implant surface: titanium dioxide (TiO(2)) nanotubes and TiO(2) gritblasted surfaces. In previous in vitro studies, the topography of the TiO(2) nanotubes improved osteoblast proliferation and adhesion compared with gritblasted titanium Surfaces. After four weeks of implantation in rabbit tibias, pull-out testing indicated that TiO(2) nanotubes significantly improved bone bonding strength by as much as nine-fold compared with TiO(2) gritblasted surfaces. Histological analysis confirmed greater bone-implant contact area, new bone formation, and calcium and phosphorus levels on the nanotube surfaces. It is anticipated that further studies will contribute to a better understanding of the effect of implant nanotopography on in vivo bone formation and bonding strength. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 92A: 1218-1224, 2016
引用
收藏
页码:1218 / 1224
页数:7
相关论文
共 22 条
[1]   Improvement in the morphology of Ti-based surfaces:: a new process to increase in vitro human osteoblast response [J].
Bigerelle, M ;
Anselme, K ;
Noël, B ;
Ruderman, I ;
Hardouin, P ;
Iost, A .
BIOMATERIALS, 2002, 23 (07) :1563-1577
[2]   Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells [J].
Bordji, K ;
Jouzeau, EY ;
Mainard, D ;
Payan, E ;
Delagoutte, JP ;
Netter, P .
BIOMATERIALS, 1996, 17 (05) :491-500
[3]   Enhanced cellular mobility guided by TiO2 nanotube surfaces [J].
Brammer, Karla S. ;
Oh, Seunghan ;
Gallagher, John O. ;
Jin, Sungho .
NANO LETTERS, 2008, 8 (03) :786-793
[4]  
Buser D, 1999, J BIOMED MATER RES, V45, P75, DOI 10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO
[5]  
2-P
[6]   Nanobiomaterial applications in orthopedics [J].
Christenson, Elizabeth M. ;
Anseth, Kristi S. ;
van den Beucken, Leroen J. J. P. ;
Chan, Casey K. ;
Ercan, Batur ;
Jansen, John A. ;
Laurencin, Cato T. ;
Li, Wan-Ju ;
Murugan, Ramalingam ;
Nair, Lakshmi S. ;
Ramakrishna, Seeram ;
Tuan, Rocky S. ;
Webster, Thomas J. ;
Mikos, Antonios G. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2007, 25 (01) :11-22
[7]   Bone bonding at natural and biomaterial surfaces [J].
Davies, John E. .
BIOMATERIALS, 2007, 28 (34) :5058-5067
[8]   A METHOD FOR THE STUDY OF UNDECALCIFIED BONES AND TEETH WITH ATTACHED SOFT-TISSUES - THE SAGE-SCHLIFF (SAWING AND GRINDING) TECHNIQUE [J].
DONATH, K ;
BREUNER, G .
JOURNAL OF ORAL PATHOLOGY & MEDICINE, 1982, 11 (04) :318-326
[9]   Interactions between human whole blood and modified TiO2-surfaces:: Influence of surface topography and oxide thickness on leukocyte adhesion and activation [J].
Eriksson, C ;
Lausmaa, J ;
Nygren, H .
BIOMATERIALS, 2001, 22 (14) :1987-1996
[10]   A new and evolving paradigm for biocompatibitity [J].
Hilborn, Jons ;
Bjursten, Lars M. .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2007, 1 (02) :110-119