Transport between twisted graphene layers

被引:181
作者
Bistritzer, R. [1 ]
MacDonald, A. H. [1 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 24期
关键词
EPITAXIAL GRAPHENE; GRAPHITE; NANORIBBONS; SURFACE;
D O I
10.1103/PhysRevB.81.245412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Commensurate- incommensurate transitions are ubiquitous in physics and are often accompanied by intriguing phenomena. In few-layer graphene (FLG) systems, commensurability between honeycomb lattices on adjacent layers is regulated by their relative orientation angle theta, which is in turn dependent on sample preparation procedures. Because incommensurability suppresses interlayer hybridization, it is often claimed that graphene layers can be electrically isolated by a relative twist, even though they are vertically separated by a fraction of a nanometer. We present a theory of interlayer transport in FLG systems which reveals a richer picture in which the specific conductance depends sensitively on theta, single-layer Bloch-state lifetime, in-plane magnetic field, and bias voltage. We find that linear and differential conductances are generally large and negative near commensurate values of theta, and small and positive otherwise. We show that accounting for interlayer coupling may be essential for describing transport in FLG despite its physically insignificant effect on the band structure of the system.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Non-linear dynamics of semiconductor superlattices [J].
Bonilla, LL ;
Grahn, HT .
REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (03) :577-683
[4]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[8]   Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithography [J].
Dobrik, G. ;
Tapaszto, L. ;
Nemes-Incze, P. ;
Lambin, Ph. ;
Biro, L. P. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (04) :896-902
[9]   Graphene bilayer with a twist: Electronic structure [J].
dos Santos, J. M. B. Lopes ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[10]   PROBING A 2-DIMENSIONAL FERMI-SURFACE BY TUNNELING [J].
EISENSTEIN, JP ;
GRAMILA, TJ ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW B, 1991, 44 (12) :6511-6514