An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of-1 ribosomal frameshifting

被引:22
作者
Chou, Ming-Yuan [1 ]
Chang, Kung-Yao [1 ]
机构
[1] Natl Chung Hsing Univ, Grad Inst Biochem, Taichung 402, Taiwan
关键词
HUMAN TELOMERASE RNA; MESSENGER-RNA; TERTIARY INTERACTIONS; RETROVIRAL RNA; WILD-TYPE; SIGNAL; VIRUS; CORONAVIRUS; STABILITY; TRANSLATION;
D O I
10.1093/nar/gkp1107
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An efficient -1 programmed ribosomal frameshifting (PRF) signal requires an RNA slippery sequence and a downstream RNA stimulator, and the hairpin-type pseudoknot is the most common stimulator. However, a pseudoknot is not sufficient to promote -1 PRF. hTPK-DU177, a pseudoknot derived from human telomerase RNA, shares structural similarities with several -1 PRF pseudoknots and is used to dissect the roles of distinct structural features in the stimulator of -1 PRF. Structure-based mutagenesis on hTPK-DU177 reveals that the -1 PRF efficiency of this stimulator can be modulated by sequential removal of base-triple interactions surrounding the helical junction. Further analysis of the junction-flanking base triples indicates that specific stem-loop interactions and their relative positions to the helical junction play crucial roles for the -1 PRF activity of this pseudoknot. Intriguingly, a bimolecular pseudoknot approach based on hTPK-DU177 reveals that continuing triplex structure spanning the helical junction, lacking one of the loop-closure features embedded in pseudoknot topology, can stimulate -1 PRF. Therefore, the triplex structure is an essential determinant for the DU177 pseudoknot to stimulate -1 PRF. Furthermore, it suggests that -1 PRF, induced by an in-trans RNA via specific base-triple interactions with messenger RNAs, can be a plausible regulatory function for non-coding RNAs.
引用
收藏
页码:1676 / 1685
页数:10
相关论文
共 42 条
[31]   Torsional restraint: a new twist on frameshifting pseudoknots [J].
Plant, EP ;
Dinman, JD .
NUCLEIC ACIDS RESEARCH, 2005, 33 (06) :1825-1833
[32]   The 9-Å solution:: How mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting [J].
Plant, EP ;
Jacobs, KLM ;
Harger, JW ;
Meskauskas, A ;
Jacobs, JL ;
Baxter, JL ;
Petrov, AN ;
Dinman, JD .
RNA, 2003, 9 (02) :168-174
[33]   Triple-helix structure in telomerase RNA contributes to catalysis [J].
Qiao, Feng ;
Cech, Thomas R. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (06) :634-640
[34]   Energetic contributions for the formation of TAT/TAT, TAT/CGC+, and CGC+/CGC+ base triplet stacks [J].
Soto, AM ;
Loo, J ;
Marky, LA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (48) :14355-14363
[35]   Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot [J].
Su L. ;
Chen L. ;
Egli M. ;
Berger J.M. ;
Rich A. .
Nature Structural Biology, 1999, 6 (3) :285-292
[36]   An atypical RNA pseudoknot stimulator and an upstream attenuation signal for-1 ribosomal frameshifting of SARS coronavirus [J].
Su, MC ;
Chang, CT ;
Chu, CH ;
Tsai, CH ;
Chang, KY .
NUCLEIC ACIDS RESEARCH, 2005, 33 (13) :4265-4275
[37]   MRNA helicase activity of the ribosome [J].
Takyar, S ;
Hickerson, RP ;
Noller, HF .
CELL, 2005, 120 (01) :49-58
[38]   Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function [J].
Theimer, CA ;
Blois, CA ;
Feigon, J .
MOLECULAR CELL, 2005, 17 (05) :671-682
[39]   RIBOSOMAL MOVEMENT IMPEDED AT A PSEUDOKNOT REQUIRED FOR FRAMESHIFTING [J].
TU, CL ;
TZENG, TH ;
BRUENN, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8636-8640
[40]   A functional-1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene [J].
Wills, NM ;
Moore, B ;
Hammer, A ;
Gesteland, RF ;
Atkins, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (11) :7082-7088