Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations

被引:22
作者
Babiuc, M. C. [1 ]
Kreiss, H-O.
Winicour, Jeffrey
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Royal Inst Technol, NADA, S-10044 Stockholm, Sweden
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-4476 Golm, Germany
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.75.044002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A new formulation of constraint-preserving boundary conditions of the Sommerfeld-type for such systems has recently been proposed. We implement these boundary conditions in a nonlinear 3D evolution code and test their accuracy.
引用
收藏
页数:13
相关论文
共 20 条
[1]   Towards standard testbeds for numerical relativity [J].
Alcubierre, M ;
Allen, G ;
Bona, C ;
Fiske, D ;
Goodale, T ;
Guzmán, FS ;
Hawke, I ;
Hawley, SH ;
Husa, S ;
Koppitz, M ;
Lechner, C ;
Pollney, D ;
Rideout, D ;
Salgado, M ;
Schnetter, E ;
Seidel, E ;
Shinkai, H ;
Shoemaker, D ;
Szilágyi, B ;
Takahashi, R ;
Winicour, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) :589-613
[2]  
Babiuc M, 2006, LECT NOTES PHYS, V692, P251, DOI 10.1007/3-540-33484-X_12
[3]   Testing numerical evolution with the shifted gauge wave [J].
Babiuc, Maria C. ;
Szilagyi, Bela ;
Winicour, Jeffrey .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (16) :S319-S341
[4]   Harmonic initial-boundary evolution in general relativity [J].
Babiuc, MC ;
Szilágyi, B ;
Winicour, J .
PHYSICAL REVIEW D, 2006, 73 (06)
[5]  
FRAUENDIENER J, 2004, LIVING REV RELATIV, V7, P253
[6]   Hyperbolic reductions for Einstein's equations [J].
Friedrich, H .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (06) :1451-1469
[7]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655
[8]   Constraint damping in the Z4 formulation and harmonic gauge [J].
Gundlach, C ;
Calabrese, G ;
Hinder, I ;
Martín-García, JM .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3767-3773
[9]  
Husa S, 2003, LECT NOTES PHYS, V617, P159
[10]   Problems which are well posed in a generalized sense with applications to the Einstein equations [J].
Kreiss, H-O ;
Winicour, J. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (16) :S405-S420