Constraint damping in the Z4 formulation and harmonic gauge

被引:178
作者
Gundlach, C [1 ]
Calabrese, G
Hinder, I
Martín-García, JM
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] CSIC, Inst Estructura Mat, Ctr Fis Miguel A Catalan, E-28006 Madrid, Spain
关键词
D O I
10.1088/0264-9381/22/17/025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that by adding suitable lower-order terms to the Z4 formulation of the Einstein equations, all constraint violations except constant modes are damped. This makes the Z4 formulation a particularly simple example of a lambda-system as suggested by Brodbeck et al (1999 J. Math. Phys. 40 909). We also show that the Einstein equations in harmonic coordinates can be obtained from the Z4 formulation by a change of variables that leaves the implied constraint evolution system unchanged. Therefore, the same method can be used to damp all constraints in the Einstein equations in harmonic gauge.
引用
收藏
页码:3767 / 3773
页数:7
相关论文
共 12 条
[1]   3+1 covariant suite of numerical relativity evolution systems [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C .
PHYSICAL REVIEW D, 2002, 66 (08)
[2]   Dynamical shift conditions for the Z4 and BSSN formalisms [J].
Bona, C ;
Palenzuela, C .
PHYSICAL REVIEW D, 2004, 69 (10)
[3]   Symmetry-breaking mechanism for the Z4 general-covariant evolution system -: art. no. 064036 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2004, 69 (06) :11
[4]   General-covariant evolution formalism for numerical relativity -: art. no. 104005 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2003, 67 (10)
[5]   Einstein's equations with asymptotically stable constraint propagation [J].
Brodbeck, O ;
Frittelli, S ;
Reula, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :909-923
[6]   A remedy for constraint growth in numerical relativity: the Maxwell case [J].
Calabrese, G .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (17) :4025-4040
[7]  
FRIEDRICH H, 2005, NONLINEARITY SUBSIDI
[8]   Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations -: art. no. 044032 [J].
Gundlach, C ;
Martín-García, JM .
PHYSICAL REVIEW D, 2004, 70 (04)
[9]   Strongly hyperbolic second order Einstein's evolution equations [J].
Nagy, G ;
Ortiz, OE ;
Reula, OA .
PHYSICAL REVIEW D, 2004, 70 (04)
[10]   Effect of constraint enforcement on the quality of numerical solutions in general relativity -: art. no. 024021 [J].
Siebel, F ;
Hübner, P .
PHYSICAL REVIEW D, 2001, 64 (02)