Chaotic advection and relative dispersion in an experimental convective flow

被引:12
作者
Boffetta, G
Cencini, M
Espa, S
Querzoli, G
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Idraul Trasporti & Strade, I-00184 Rome, Italy
[4] Univ Cagliari, Dipartimento Ingn Terr, I-90123 Cagliari, Italy
[5] Ist Nazl Fis Mat, Unita Torino, Turin, Italy
[6] Ist Nazl Fis Mat, Unita Roma, Rome, Italy
关键词
D O I
10.1063/1.1320836
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lagrangian motion in a quasi-two-dimensional, time-dependent, convective flow is studied at different Rayleigh numbers. The particle tracking velocimetry technique is used to reconstruct Lagrangian trajectories of passive tracers. Dispersion properties are investigated by means of the recently introduced finite size Lyapunov exponent analysis. Lagrangian motion is found to be chaotic with a Lyapunov exponent which depends on the Rayleigh number as Ra-1/2. The power law scaling is explained in terms of a dimensional analysis on the equation of motion. A comparative study shows that the fixed scale method makes more physical sense than the traditional way of looking at the relative dispersion at fixed times. (C) 2000 American Institute of Physics. [S1070-6631(00)00112-4].
引用
收藏
页码:3160 / 3167
页数:8
相关论文
共 28 条
[1]  
ADRIAN RJ, 1991, ANNU REV FLUID MECH, V23, P261, DOI 10.1146/annurev.fluid.23.1.261
[2]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[3]   The role of chaotic orbits in the determination of power spectra passive scalars [J].
Antonsen, TM ;
Fan, ZC ;
Ott, E ;
GarciaLopez, E .
PHYSICS OF FLUIDS, 1996, 8 (11) :3094-3104
[4]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[6]   Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient [J].
Artale, V ;
Boffetta, G ;
Celani, A ;
Cencini, M ;
Vulpiani, A .
PHYSICS OF FLUIDS, 1997, 9 (11) :3162-3171
[7]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[8]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[9]   CHAOTIC ADVECTION IN POINT VORTEX MODELS AND 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BOFFETTA, G ;
PROVENZALE, A ;
VULPIANI, A .
PHYSICS OF FLUIDS, 1994, 6 (07) :2465-2474
[10]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236